Properties

Label 2-2400-1.1-c3-0-33
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 22·7-s + 9·9-s − 18.8·11-s − 18.8·13-s − 132.·17-s − 113.·19-s + 66·21-s + 160·23-s + 27·27-s + 128·29-s + 75.4·31-s − 56.6·33-s + 18.8·37-s − 56.6·39-s − 358·41-s + 172·43-s − 4·47-s + 141·49-s − 396.·51-s + 660.·53-s − 339.·57-s + 735.·59-s − 14·61-s + 198·63-s + 848·67-s + 480·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.18·7-s + 0.333·9-s − 0.517·11-s − 0.402·13-s − 1.88·17-s − 1.36·19-s + 0.685·21-s + 1.45·23-s + 0.192·27-s + 0.819·29-s + 0.437·31-s − 0.298·33-s + 0.0838·37-s − 0.232·39-s − 1.36·41-s + 0.609·43-s − 0.0124·47-s + 0.411·49-s − 1.08·51-s + 1.71·53-s − 0.789·57-s + 1.62·59-s − 0.0293·61-s + 0.395·63-s + 1.54·67-s + 0.837·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.891865585\)
\(L(\frac12)\) \(\approx\) \(2.891865585\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
5 \( 1 \)
good7 \( 1 - 22T + 343T^{2} \)
11 \( 1 + 18.8T + 1.33e3T^{2} \)
13 \( 1 + 18.8T + 2.19e3T^{2} \)
17 \( 1 + 132.T + 4.91e3T^{2} \)
19 \( 1 + 113.T + 6.85e3T^{2} \)
23 \( 1 - 160T + 1.21e4T^{2} \)
29 \( 1 - 128T + 2.43e4T^{2} \)
31 \( 1 - 75.4T + 2.97e4T^{2} \)
37 \( 1 - 18.8T + 5.06e4T^{2} \)
41 \( 1 + 358T + 6.89e4T^{2} \)
43 \( 1 - 172T + 7.95e4T^{2} \)
47 \( 1 + 4T + 1.03e5T^{2} \)
53 \( 1 - 660.T + 1.48e5T^{2} \)
59 \( 1 - 735.T + 2.05e5T^{2} \)
61 \( 1 + 14T + 2.26e5T^{2} \)
67 \( 1 - 848T + 3.00e5T^{2} \)
71 \( 1 - 641.T + 3.57e5T^{2} \)
73 \( 1 - 1.16e3T + 3.89e5T^{2} \)
79 \( 1 + 75.4T + 4.93e5T^{2} \)
83 \( 1 - 596T + 5.71e5T^{2} \)
89 \( 1 - 750T + 7.04e5T^{2} \)
97 \( 1 + 528.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.500241969813315964248383812981, −8.117544103397376689614046341764, −7.02668426353619637851311334043, −6.56381817281832899953178840184, −5.15228107374974199916009248876, −4.70915459903544861228441403993, −3.85227827621379414317353091255, −2.48939184404913320820985350470, −2.08382785758785839528011326315, −0.72011646640589936758896360802, 0.72011646640589936758896360802, 2.08382785758785839528011326315, 2.48939184404913320820985350470, 3.85227827621379414317353091255, 4.70915459903544861228441403993, 5.15228107374974199916009248876, 6.56381817281832899953178840184, 7.02668426353619637851311334043, 8.117544103397376689614046341764, 8.500241969813315964248383812981

Graph of the $Z$-function along the critical line