Properties

Label 2-2400-1.1-c3-0-3
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 33.1·7-s + 9·9-s − 63.9·11-s − 89.7·13-s − 71.4·17-s + 44.1·19-s − 99.4·21-s − 100·23-s + 27·27-s + 33.4·29-s − 120.·31-s − 191.·33-s − 13.5·37-s − 269.·39-s + 130.·41-s − 410.·43-s − 216.·47-s + 755.·49-s − 214.·51-s + 279.·53-s + 132.·57-s + 133.·59-s − 297.·61-s − 298.·63-s + 501.·67-s − 300·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.78·7-s + 0.333·9-s − 1.75·11-s − 1.91·13-s − 1.01·17-s + 0.533·19-s − 1.03·21-s − 0.906·23-s + 0.192·27-s + 0.213·29-s − 0.697·31-s − 1.01·33-s − 0.0600·37-s − 1.10·39-s + 0.497·41-s − 1.45·43-s − 0.671·47-s + 2.20·49-s − 0.588·51-s + 0.725·53-s + 0.307·57-s + 0.294·59-s − 0.624·61-s − 0.596·63-s + 0.913·67-s − 0.523·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.2193324061\)
\(L(\frac12)\) \(\approx\) \(0.2193324061\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
5 \( 1 \)
good7 \( 1 + 33.1T + 343T^{2} \)
11 \( 1 + 63.9T + 1.33e3T^{2} \)
13 \( 1 + 89.7T + 2.19e3T^{2} \)
17 \( 1 + 71.4T + 4.91e3T^{2} \)
19 \( 1 - 44.1T + 6.85e3T^{2} \)
23 \( 1 + 100T + 1.21e4T^{2} \)
29 \( 1 - 33.4T + 2.43e4T^{2} \)
31 \( 1 + 120.T + 2.97e4T^{2} \)
37 \( 1 + 13.5T + 5.06e4T^{2} \)
41 \( 1 - 130.T + 6.89e4T^{2} \)
43 \( 1 + 410.T + 7.95e4T^{2} \)
47 \( 1 + 216.T + 1.03e5T^{2} \)
53 \( 1 - 279.T + 1.48e5T^{2} \)
59 \( 1 - 133.T + 2.05e5T^{2} \)
61 \( 1 + 297.T + 2.26e5T^{2} \)
67 \( 1 - 501.T + 3.00e5T^{2} \)
71 \( 1 + 289.T + 3.57e5T^{2} \)
73 \( 1 + 756.T + 3.89e5T^{2} \)
79 \( 1 - 120.T + 4.93e5T^{2} \)
83 \( 1 + 65.6T + 5.71e5T^{2} \)
89 \( 1 - 513.T + 7.04e5T^{2} \)
97 \( 1 - 828.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.682832330065603486323242008870, −7.68957010380750072932137326057, −7.22301947449498770578629780902, −6.41310107359104676695511256695, −5.42815888402120580072328438757, −4.65755252255337164925469733565, −3.51855653513103167264916098246, −2.72144338177831433497423338443, −2.22716850560531748124466154988, −0.18137073427853652610029384846, 0.18137073427853652610029384846, 2.22716850560531748124466154988, 2.72144338177831433497423338443, 3.51855653513103167264916098246, 4.65755252255337164925469733565, 5.42815888402120580072328438757, 6.41310107359104676695511256695, 7.22301947449498770578629780902, 7.68957010380750072932137326057, 8.682832330065603486323242008870

Graph of the $Z$-function along the critical line