Properties

Label 2-2400-1.1-c3-0-27
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 4·7-s + 9·9-s − 40·11-s + 90·13-s + 70·17-s − 40·19-s + 12·21-s + 108·23-s − 27·27-s + 166·29-s + 40·31-s + 120·33-s + 130·37-s − 270·39-s − 310·41-s − 268·43-s − 556·47-s − 327·49-s − 210·51-s + 370·53-s + 120·57-s − 240·59-s − 130·61-s − 36·63-s + 876·67-s − 324·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.215·7-s + 1/3·9-s − 1.09·11-s + 1.92·13-s + 0.998·17-s − 0.482·19-s + 0.124·21-s + 0.979·23-s − 0.192·27-s + 1.06·29-s + 0.231·31-s + 0.633·33-s + 0.577·37-s − 1.10·39-s − 1.18·41-s − 0.950·43-s − 1.72·47-s − 0.953·49-s − 0.576·51-s + 0.958·53-s + 0.278·57-s − 0.529·59-s − 0.272·61-s − 0.0719·63-s + 1.59·67-s − 0.565·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.757740882\)
\(L(\frac12)\) \(\approx\) \(1.757740882\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 \)
good7 \( 1 + 4 T + p^{3} T^{2} \)
11 \( 1 + 40 T + p^{3} T^{2} \)
13 \( 1 - 90 T + p^{3} T^{2} \)
17 \( 1 - 70 T + p^{3} T^{2} \)
19 \( 1 + 40 T + p^{3} T^{2} \)
23 \( 1 - 108 T + p^{3} T^{2} \)
29 \( 1 - 166 T + p^{3} T^{2} \)
31 \( 1 - 40 T + p^{3} T^{2} \)
37 \( 1 - 130 T + p^{3} T^{2} \)
41 \( 1 + 310 T + p^{3} T^{2} \)
43 \( 1 + 268 T + p^{3} T^{2} \)
47 \( 1 + 556 T + p^{3} T^{2} \)
53 \( 1 - 370 T + p^{3} T^{2} \)
59 \( 1 + 240 T + p^{3} T^{2} \)
61 \( 1 + 130 T + p^{3} T^{2} \)
67 \( 1 - 876 T + p^{3} T^{2} \)
71 \( 1 - 840 T + p^{3} T^{2} \)
73 \( 1 + 250 T + p^{3} T^{2} \)
79 \( 1 - 880 T + p^{3} T^{2} \)
83 \( 1 + 188 T + p^{3} T^{2} \)
89 \( 1 + 726 T + p^{3} T^{2} \)
97 \( 1 - 1550 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.282375215826227248500635563202, −8.156934997616011974596503727131, −6.82656169215741030924238181994, −6.34797418825491860358263670327, −5.45246309958657083386664968130, −4.83144357549679585456733578333, −3.67047829184532088491135846759, −2.96009649854331603670437710199, −1.56781777610032261282560141714, −0.63776740385633488303951328186, 0.63776740385633488303951328186, 1.56781777610032261282560141714, 2.96009649854331603670437710199, 3.67047829184532088491135846759, 4.83144357549679585456733578333, 5.45246309958657083386664968130, 6.34797418825491860358263670327, 6.82656169215741030924238181994, 8.156934997616011974596503727131, 8.282375215826227248500635563202

Graph of the $Z$-function along the critical line