Properties

Label 2-2400-1.1-c3-0-22
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 26.7·7-s + 9·9-s + 46.6·11-s − 49.6·13-s − 32.4·17-s + 4.14·19-s − 80.2·21-s + 213.·23-s + 27·27-s − 272.·29-s − 327.·31-s + 139.·33-s + 399.·37-s − 148.·39-s − 42.2·41-s + 468.·43-s − 275.·47-s + 372.·49-s − 97.2·51-s − 158.·53-s + 12.4·57-s − 566.·59-s + 206.·61-s − 240.·63-s − 351.·67-s + 639.·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.44·7-s + 0.333·9-s + 1.27·11-s − 1.05·13-s − 0.462·17-s + 0.0500·19-s − 0.833·21-s + 1.93·23-s + 0.192·27-s − 1.74·29-s − 1.89·31-s + 0.737·33-s + 1.77·37-s − 0.610·39-s − 0.161·41-s + 1.66·43-s − 0.853·47-s + 1.08·49-s − 0.266·51-s − 0.409·53-s + 0.0288·57-s − 1.24·59-s + 0.433·61-s − 0.481·63-s − 0.641·67-s + 1.11·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.001838721\)
\(L(\frac12)\) \(\approx\) \(2.001838721\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
5 \( 1 \)
good7 \( 1 + 26.7T + 343T^{2} \)
11 \( 1 - 46.6T + 1.33e3T^{2} \)
13 \( 1 + 49.6T + 2.19e3T^{2} \)
17 \( 1 + 32.4T + 4.91e3T^{2} \)
19 \( 1 - 4.14T + 6.85e3T^{2} \)
23 \( 1 - 213.T + 1.21e4T^{2} \)
29 \( 1 + 272.T + 2.43e4T^{2} \)
31 \( 1 + 327.T + 2.97e4T^{2} \)
37 \( 1 - 399.T + 5.06e4T^{2} \)
41 \( 1 + 42.2T + 6.89e4T^{2} \)
43 \( 1 - 468.T + 7.95e4T^{2} \)
47 \( 1 + 275.T + 1.03e5T^{2} \)
53 \( 1 + 158.T + 1.48e5T^{2} \)
59 \( 1 + 566.T + 2.05e5T^{2} \)
61 \( 1 - 206.T + 2.26e5T^{2} \)
67 \( 1 + 351.T + 3.00e5T^{2} \)
71 \( 1 - 500.T + 3.57e5T^{2} \)
73 \( 1 - 987.T + 3.89e5T^{2} \)
79 \( 1 + 172.T + 4.93e5T^{2} \)
83 \( 1 + 238.T + 5.71e5T^{2} \)
89 \( 1 + 42.7T + 7.04e5T^{2} \)
97 \( 1 - 1.18e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.027552346133569878804130264420, −7.65783367435389114721481783467, −7.09551633655438119671592543917, −6.46871214446932044957076658271, −5.55732854306828055711944716413, −4.44489329802607383264972511796, −3.60825473306669661635260547063, −2.93526051762979582437687522538, −1.90663345487212514898696022225, −0.59417055895269783585569381852, 0.59417055895269783585569381852, 1.90663345487212514898696022225, 2.93526051762979582437687522538, 3.60825473306669661635260547063, 4.44489329802607383264972511796, 5.55732854306828055711944716413, 6.46871214446932044957076658271, 7.09551633655438119671592543917, 7.65783367435389114721481783467, 9.027552346133569878804130264420

Graph of the $Z$-function along the critical line