Properties

Label 2-2400-1.1-c3-0-21
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 6.80·7-s + 9·9-s + 39.2·11-s − 78.4·13-s + 95.2·17-s − 133.·19-s − 20.4·21-s − 66.8·23-s − 27·27-s + 99.6·29-s + 322.·31-s − 117.·33-s − 108.·37-s + 235.·39-s + 278.·41-s − 381.·43-s − 211.·47-s − 296.·49-s − 285.·51-s + 411.·53-s + 399.·57-s + 447.·59-s + 158.·61-s + 61.2·63-s − 455.·67-s + 200.·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.367·7-s + 0.333·9-s + 1.07·11-s − 1.67·13-s + 1.35·17-s − 1.60·19-s − 0.212·21-s − 0.605·23-s − 0.192·27-s + 0.638·29-s + 1.86·31-s − 0.620·33-s − 0.483·37-s + 0.965·39-s + 1.05·41-s − 1.35·43-s − 0.656·47-s − 0.864·49-s − 0.784·51-s + 1.06·53-s + 0.928·57-s + 0.986·59-s + 0.333·61-s + 0.122·63-s − 0.830·67-s + 0.349·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.640138042\)
\(L(\frac12)\) \(\approx\) \(1.640138042\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 \)
good7 \( 1 - 6.80T + 343T^{2} \)
11 \( 1 - 39.2T + 1.33e3T^{2} \)
13 \( 1 + 78.4T + 2.19e3T^{2} \)
17 \( 1 - 95.2T + 4.91e3T^{2} \)
19 \( 1 + 133.T + 6.85e3T^{2} \)
23 \( 1 + 66.8T + 1.21e4T^{2} \)
29 \( 1 - 99.6T + 2.43e4T^{2} \)
31 \( 1 - 322.T + 2.97e4T^{2} \)
37 \( 1 + 108.T + 5.06e4T^{2} \)
41 \( 1 - 278.T + 6.89e4T^{2} \)
43 \( 1 + 381.T + 7.95e4T^{2} \)
47 \( 1 + 211.T + 1.03e5T^{2} \)
53 \( 1 - 411.T + 1.48e5T^{2} \)
59 \( 1 - 447.T + 2.05e5T^{2} \)
61 \( 1 - 158.T + 2.26e5T^{2} \)
67 \( 1 + 455.T + 3.00e5T^{2} \)
71 \( 1 - 630.T + 3.57e5T^{2} \)
73 \( 1 + 58.8T + 3.89e5T^{2} \)
79 \( 1 - 1.25e3T + 4.93e5T^{2} \)
83 \( 1 - 229.T + 5.71e5T^{2} \)
89 \( 1 + 1.17e3T + 7.04e5T^{2} \)
97 \( 1 + 1.69e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.443155241788791549952799705046, −7.925990032612858422775151890737, −6.87288578927055282320894441250, −6.42250803373191110588704243481, −5.41222087168191134413918344598, −4.66777588799678555418892911685, −3.97136242655073861910796249963, −2.71532802279980020739715607957, −1.69014301812004109901437042729, −0.59414674952314758353181908029, 0.59414674952314758353181908029, 1.69014301812004109901437042729, 2.71532802279980020739715607957, 3.97136242655073861910796249963, 4.66777588799678555418892911685, 5.41222087168191134413918344598, 6.42250803373191110588704243481, 6.87288578927055282320894441250, 7.925990032612858422775151890737, 8.443155241788791549952799705046

Graph of the $Z$-function along the critical line