Properties

Label 2-2400-1.1-c3-0-18
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 32.4·7-s + 9·9-s − 41.5·11-s − 19.3·13-s − 132.·17-s − 80.4·19-s − 97.2·21-s − 134.·23-s − 27·27-s + 217.·29-s − 129.·31-s + 124.·33-s − 239.·37-s + 58.1·39-s + 371.·41-s + 476.·43-s + 44.5·47-s + 708.·49-s + 396.·51-s + 14.7·53-s + 241.·57-s − 186.·59-s − 609.·61-s + 291.·63-s + 332.·67-s + 403.·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.75·7-s + 0.333·9-s − 1.13·11-s − 0.413·13-s − 1.88·17-s − 0.971·19-s − 1.01·21-s − 1.21·23-s − 0.192·27-s + 1.39·29-s − 0.749·31-s + 0.657·33-s − 1.06·37-s + 0.238·39-s + 1.41·41-s + 1.68·43-s + 0.138·47-s + 2.06·49-s + 1.08·51-s + 0.0381·53-s + 0.560·57-s − 0.411·59-s − 1.28·61-s + 0.583·63-s + 0.605·67-s + 0.703·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.400920548\)
\(L(\frac12)\) \(\approx\) \(1.400920548\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 \)
good7 \( 1 - 32.4T + 343T^{2} \)
11 \( 1 + 41.5T + 1.33e3T^{2} \)
13 \( 1 + 19.3T + 2.19e3T^{2} \)
17 \( 1 + 132.T + 4.91e3T^{2} \)
19 \( 1 + 80.4T + 6.85e3T^{2} \)
23 \( 1 + 134.T + 1.21e4T^{2} \)
29 \( 1 - 217.T + 2.43e4T^{2} \)
31 \( 1 + 129.T + 2.97e4T^{2} \)
37 \( 1 + 239.T + 5.06e4T^{2} \)
41 \( 1 - 371.T + 6.89e4T^{2} \)
43 \( 1 - 476.T + 7.95e4T^{2} \)
47 \( 1 - 44.5T + 1.03e5T^{2} \)
53 \( 1 - 14.7T + 1.48e5T^{2} \)
59 \( 1 + 186.T + 2.05e5T^{2} \)
61 \( 1 + 609.T + 2.26e5T^{2} \)
67 \( 1 - 332.T + 3.00e5T^{2} \)
71 \( 1 - 386.T + 3.57e5T^{2} \)
73 \( 1 - 1.13e3T + 3.89e5T^{2} \)
79 \( 1 - 1.31e3T + 4.93e5T^{2} \)
83 \( 1 + 430.T + 5.71e5T^{2} \)
89 \( 1 + 1.52e3T + 7.04e5T^{2} \)
97 \( 1 - 462.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.427695495516863872843104108278, −7.927167996602161624371164226501, −7.13989515245160510302911794860, −6.21183152242341777761257595081, −5.35947366485571361209531323335, −4.62662901820064737079016425254, −4.19306896242383609338665871933, −2.41110814441400476416317585169, −1.93588763957682950215495832094, −0.52317655941659549929866699716, 0.52317655941659549929866699716, 1.93588763957682950215495832094, 2.41110814441400476416317585169, 4.19306896242383609338665871933, 4.62662901820064737079016425254, 5.35947366485571361209531323335, 6.21183152242341777761257595081, 7.13989515245160510302911794860, 7.927167996602161624371164226501, 8.427695495516863872843104108278

Graph of the $Z$-function along the critical line