Properties

Label 2-2400-1.1-c3-0-17
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 26.3·7-s + 9·9-s − 20·11-s + 40.3·13-s − 101.·17-s − 29.6·19-s − 79.0·21-s + 22.3·23-s + 27·27-s + 187.·29-s − 293.·31-s − 60·33-s + 1.77·37-s + 121.·39-s + 229.·41-s + 146.·43-s − 538.·47-s + 351.·49-s − 303.·51-s − 432.·53-s − 88.9·57-s + 502.·59-s + 937.·61-s − 237.·63-s − 483.·67-s + 67.0·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.42·7-s + 0.333·9-s − 0.548·11-s + 0.860·13-s − 1.44·17-s − 0.357·19-s − 0.821·21-s + 0.202·23-s + 0.192·27-s + 1.20·29-s − 1.69·31-s − 0.316·33-s + 0.00788·37-s + 0.497·39-s + 0.873·41-s + 0.519·43-s − 1.67·47-s + 1.02·49-s − 0.832·51-s − 1.11·53-s − 0.206·57-s + 1.10·59-s + 1.96·61-s − 0.474·63-s − 0.880·67-s + 0.117·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.614051229\)
\(L(\frac12)\) \(\approx\) \(1.614051229\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
5 \( 1 \)
good7 \( 1 + 26.3T + 343T^{2} \)
11 \( 1 + 20T + 1.33e3T^{2} \)
13 \( 1 - 40.3T + 2.19e3T^{2} \)
17 \( 1 + 101.T + 4.91e3T^{2} \)
19 \( 1 + 29.6T + 6.85e3T^{2} \)
23 \( 1 - 22.3T + 1.21e4T^{2} \)
29 \( 1 - 187.T + 2.43e4T^{2} \)
31 \( 1 + 293.T + 2.97e4T^{2} \)
37 \( 1 - 1.77T + 5.06e4T^{2} \)
41 \( 1 - 229.T + 6.89e4T^{2} \)
43 \( 1 - 146.T + 7.95e4T^{2} \)
47 \( 1 + 538.T + 1.03e5T^{2} \)
53 \( 1 + 432.T + 1.48e5T^{2} \)
59 \( 1 - 502.T + 2.05e5T^{2} \)
61 \( 1 - 937.T + 2.26e5T^{2} \)
67 \( 1 + 483.T + 3.00e5T^{2} \)
71 \( 1 - 397.T + 3.57e5T^{2} \)
73 \( 1 - 56.3T + 3.89e5T^{2} \)
79 \( 1 - 327.T + 4.93e5T^{2} \)
83 \( 1 - 473.T + 5.71e5T^{2} \)
89 \( 1 + 436.T + 7.04e5T^{2} \)
97 \( 1 + 1.42e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.699111568956411034994691350798, −7.972797923850046425942233639477, −6.87606134743568069931741584798, −6.52074916157754696404911604760, −5.57668644348285890350082468758, −4.44917709277940292422147060346, −3.62210228902047324881771690163, −2.87623413840602983364102840083, −1.97705329061270003761157727461, −0.52223985642771023251088128389, 0.52223985642771023251088128389, 1.97705329061270003761157727461, 2.87623413840602983364102840083, 3.62210228902047324881771690163, 4.44917709277940292422147060346, 5.57668644348285890350082468758, 6.52074916157754696404911604760, 6.87606134743568069931741584798, 7.972797923850046425942233639477, 8.699111568956411034994691350798

Graph of the $Z$-function along the critical line