Properties

Label 2-2400-1.1-c3-0-13
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 30.3·7-s + 9·9-s + 20·11-s − 16.3·13-s + 69.0·17-s + 86.3·19-s + 91.0·21-s + 34.3·23-s − 27·27-s − 39.4·29-s − 217.·31-s − 60·33-s − 281.·37-s + 49.0·39-s + 342.·41-s − 373.·43-s − 198.·47-s + 578.·49-s − 207.·51-s − 91.8·53-s − 259.·57-s − 49.1·59-s − 309.·61-s − 273.·63-s − 651.·67-s − 103.·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.63·7-s + 0.333·9-s + 0.548·11-s − 0.348·13-s + 0.985·17-s + 1.04·19-s + 0.946·21-s + 0.311·23-s − 0.192·27-s − 0.252·29-s − 1.25·31-s − 0.316·33-s − 1.25·37-s + 0.201·39-s + 1.30·41-s − 1.32·43-s − 0.616·47-s + 1.68·49-s − 0.568·51-s − 0.238·53-s − 0.601·57-s − 0.108·59-s − 0.650·61-s − 0.546·63-s − 1.18·67-s − 0.179·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.002914321\)
\(L(\frac12)\) \(\approx\) \(1.002914321\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 \)
good7 \( 1 + 30.3T + 343T^{2} \)
11 \( 1 - 20T + 1.33e3T^{2} \)
13 \( 1 + 16.3T + 2.19e3T^{2} \)
17 \( 1 - 69.0T + 4.91e3T^{2} \)
19 \( 1 - 86.3T + 6.85e3T^{2} \)
23 \( 1 - 34.3T + 1.21e4T^{2} \)
29 \( 1 + 39.4T + 2.43e4T^{2} \)
31 \( 1 + 217.T + 2.97e4T^{2} \)
37 \( 1 + 281.T + 5.06e4T^{2} \)
41 \( 1 - 342.T + 6.89e4T^{2} \)
43 \( 1 + 373.T + 7.95e4T^{2} \)
47 \( 1 + 198.T + 1.03e5T^{2} \)
53 \( 1 + 91.8T + 1.48e5T^{2} \)
59 \( 1 + 49.1T + 2.05e5T^{2} \)
61 \( 1 + 309.T + 2.26e5T^{2} \)
67 \( 1 + 651.T + 3.00e5T^{2} \)
71 \( 1 + 850.T + 3.57e5T^{2} \)
73 \( 1 + 964.T + 3.89e5T^{2} \)
79 \( 1 + 724.T + 4.93e5T^{2} \)
83 \( 1 - 433.T + 5.71e5T^{2} \)
89 \( 1 - 1.26e3T + 7.04e5T^{2} \)
97 \( 1 - 1.74e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.875582357735706090830778993790, −7.49731567466433295972200762797, −7.12534551417287300050527314784, −6.17653602571779626629353588868, −5.67938705987741001236507738951, −4.72070535180345921772501919275, −3.52336701459642231740407965609, −3.12011233790567191948524921746, −1.61288399552247873199427072035, −0.46272360168600471658369787993, 0.46272360168600471658369787993, 1.61288399552247873199427072035, 3.12011233790567191948524921746, 3.52336701459642231740407965609, 4.72070535180345921772501919275, 5.67938705987741001236507738951, 6.17653602571779626629353588868, 7.12534551417287300050527314784, 7.49731567466433295972200762797, 8.875582357735706090830778993790

Graph of the $Z$-function along the critical line