Properties

Label 2-2400-1.1-c3-0-113
Degree $2$
Conductor $2400$
Sign $-1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 18.8·7-s + 9·9-s + 63.2·11-s − 1.58·13-s − 135.·17-s − 97.2·19-s + 56.4·21-s + 41.1·23-s + 27·27-s − 207.·29-s − 193.·31-s + 189.·33-s − 339.·37-s − 4.74·39-s − 490.·41-s + 74.3·43-s + 544.·47-s + 10.6·49-s − 405.·51-s − 663.·53-s − 291.·57-s − 344.·59-s + 5.16·61-s + 169.·63-s − 671.·67-s + 123.·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.01·7-s + 0.333·9-s + 1.73·11-s − 0.0337·13-s − 1.92·17-s − 1.17·19-s + 0.586·21-s + 0.373·23-s + 0.192·27-s − 1.32·29-s − 1.12·31-s + 1.00·33-s − 1.50·37-s − 0.0194·39-s − 1.86·41-s + 0.263·43-s + 1.68·47-s + 0.0311·49-s − 1.11·51-s − 1.72·53-s − 0.677·57-s − 0.760·59-s + 0.0108·61-s + 0.338·63-s − 1.22·67-s + 0.215·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
5 \( 1 \)
good7 \( 1 - 18.8T + 343T^{2} \)
11 \( 1 - 63.2T + 1.33e3T^{2} \)
13 \( 1 + 1.58T + 2.19e3T^{2} \)
17 \( 1 + 135.T + 4.91e3T^{2} \)
19 \( 1 + 97.2T + 6.85e3T^{2} \)
23 \( 1 - 41.1T + 1.21e4T^{2} \)
29 \( 1 + 207.T + 2.43e4T^{2} \)
31 \( 1 + 193.T + 2.97e4T^{2} \)
37 \( 1 + 339.T + 5.06e4T^{2} \)
41 \( 1 + 490.T + 6.89e4T^{2} \)
43 \( 1 - 74.3T + 7.95e4T^{2} \)
47 \( 1 - 544.T + 1.03e5T^{2} \)
53 \( 1 + 663.T + 1.48e5T^{2} \)
59 \( 1 + 344.T + 2.05e5T^{2} \)
61 \( 1 - 5.16T + 2.26e5T^{2} \)
67 \( 1 + 671.T + 3.00e5T^{2} \)
71 \( 1 + 425.T + 3.57e5T^{2} \)
73 \( 1 - 94.8T + 3.89e5T^{2} \)
79 \( 1 + 770.T + 4.93e5T^{2} \)
83 \( 1 - 589.T + 5.71e5T^{2} \)
89 \( 1 + 409.T + 7.04e5T^{2} \)
97 \( 1 - 152.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.567249803989425016264602492192, −7.37308043754691896300313953491, −6.83515254023079964037531547104, −6.00759698749254995906326416257, −4.78671852703368905592254667224, −4.22207232938182282814061260619, −3.42000321713912323497847140229, −1.95130555122531036253230939380, −1.66016345870819274787541508717, 0, 1.66016345870819274787541508717, 1.95130555122531036253230939380, 3.42000321713912323497847140229, 4.22207232938182282814061260619, 4.78671852703368905592254667224, 6.00759698749254995906326416257, 6.83515254023079964037531547104, 7.37308043754691896300313953491, 8.567249803989425016264602492192

Graph of the $Z$-function along the critical line