Properties

Label 2-2400-1.1-c3-0-11
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 13.9·7-s + 9·9-s − 43.3·11-s − 25.3·13-s − 85.3·17-s − 92.3·19-s − 41.9·21-s − 31.3·23-s + 27·27-s − 220.·29-s + 111.·31-s − 130.·33-s − 123.·37-s − 76.1·39-s + 431.·41-s + 278.·43-s + 340.·47-s − 147.·49-s − 256.·51-s + 367.·53-s − 277.·57-s + 638.·59-s − 195.·61-s − 125.·63-s − 11.5·67-s − 94.1·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s + 0.333·9-s − 1.18·11-s − 0.541·13-s − 1.21·17-s − 1.11·19-s − 0.436·21-s − 0.284·23-s + 0.192·27-s − 1.40·29-s + 0.648·31-s − 0.686·33-s − 0.550·37-s − 0.312·39-s + 1.64·41-s + 0.987·43-s + 1.05·47-s − 0.428·49-s − 0.703·51-s + 0.953·53-s − 0.643·57-s + 1.40·59-s − 0.410·61-s − 0.251·63-s − 0.0210·67-s − 0.164·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.280887739\)
\(L(\frac12)\) \(\approx\) \(1.280887739\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
5 \( 1 \)
good7 \( 1 + 13.9T + 343T^{2} \)
11 \( 1 + 43.3T + 1.33e3T^{2} \)
13 \( 1 + 25.3T + 2.19e3T^{2} \)
17 \( 1 + 85.3T + 4.91e3T^{2} \)
19 \( 1 + 92.3T + 6.85e3T^{2} \)
23 \( 1 + 31.3T + 1.21e4T^{2} \)
29 \( 1 + 220.T + 2.43e4T^{2} \)
31 \( 1 - 111.T + 2.97e4T^{2} \)
37 \( 1 + 123.T + 5.06e4T^{2} \)
41 \( 1 - 431.T + 6.89e4T^{2} \)
43 \( 1 - 278.T + 7.95e4T^{2} \)
47 \( 1 - 340.T + 1.03e5T^{2} \)
53 \( 1 - 367.T + 1.48e5T^{2} \)
59 \( 1 - 638.T + 2.05e5T^{2} \)
61 \( 1 + 195.T + 2.26e5T^{2} \)
67 \( 1 + 11.5T + 3.00e5T^{2} \)
71 \( 1 - 110.T + 3.57e5T^{2} \)
73 \( 1 - 734.T + 3.89e5T^{2} \)
79 \( 1 - 195.T + 4.93e5T^{2} \)
83 \( 1 + 392.T + 5.71e5T^{2} \)
89 \( 1 - 317.T + 7.04e5T^{2} \)
97 \( 1 + 993.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.692625058385572126592051220598, −7.82259016247202405591676824111, −7.18710031596313882700955787337, −6.35245474683657536491433367613, −5.50951538281375425805131883491, −4.48822481878406901004897580615, −3.76038522774618983886155253810, −2.57221589510109614415195856536, −2.19502395180176969973477176158, −0.45243026966405474420383736462, 0.45243026966405474420383736462, 2.19502395180176969973477176158, 2.57221589510109614415195856536, 3.76038522774618983886155253810, 4.48822481878406901004897580615, 5.50951538281375425805131883491, 6.35245474683657536491433367613, 7.18710031596313882700955787337, 7.82259016247202405591676824111, 8.692625058385572126592051220598

Graph of the $Z$-function along the critical line