L(s) = 1 | + 3·3-s + 19.6·7-s + 9·9-s + 7.89·11-s − 74.5·13-s − 0.529·17-s + 89.7·19-s + 58.8·21-s − 174.·23-s + 27·27-s − 275.·29-s + 267.·31-s + 23.6·33-s + 11.3·37-s − 223.·39-s − 384.·41-s + 28.5·43-s − 289.·47-s + 41.8·49-s − 1.58·51-s + 256.·53-s + 269.·57-s + 174.·59-s − 732.·61-s + 176.·63-s + 498.·67-s − 524.·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.05·7-s + 0.333·9-s + 0.216·11-s − 1.59·13-s − 0.00755·17-s + 1.08·19-s + 0.611·21-s − 1.58·23-s + 0.192·27-s − 1.76·29-s + 1.54·31-s + 0.125·33-s + 0.0505·37-s − 0.918·39-s − 1.46·41-s + 0.101·43-s − 0.898·47-s + 0.122·49-s − 0.00436·51-s + 0.664·53-s + 0.626·57-s + 0.384·59-s − 1.53·61-s + 0.353·63-s + 0.908·67-s − 0.914·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 3T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 19.6T + 343T^{2} \) |
| 11 | \( 1 - 7.89T + 1.33e3T^{2} \) |
| 13 | \( 1 + 74.5T + 2.19e3T^{2} \) |
| 17 | \( 1 + 0.529T + 4.91e3T^{2} \) |
| 19 | \( 1 - 89.7T + 6.85e3T^{2} \) |
| 23 | \( 1 + 174.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 275.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 267.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 11.3T + 5.06e4T^{2} \) |
| 41 | \( 1 + 384.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 28.5T + 7.95e4T^{2} \) |
| 47 | \( 1 + 289.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 256.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 174.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 732.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 498.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 763.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 927.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 217.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 21.8T + 5.71e5T^{2} \) |
| 89 | \( 1 + 191.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 885.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.062576510617368373619053781838, −7.65866211998053826218953327347, −6.91971939297685489503818192279, −5.76293617631337176367180624045, −4.94702336272671704039628625137, −4.28004303564182036451692820630, −3.22530329128024121954870223209, −2.22168123065707872944376818299, −1.47434401571424476442462851172, 0,
1.47434401571424476442462851172, 2.22168123065707872944376818299, 3.22530329128024121954870223209, 4.28004303564182036451692820630, 4.94702336272671704039628625137, 5.76293617631337176367180624045, 6.91971939297685489503818192279, 7.65866211998053826218953327347, 8.062576510617368373619053781838