Properties

Label 2-2400-1.1-c3-0-109
Degree $2$
Conductor $2400$
Sign $-1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 19.6·7-s + 9·9-s + 7.89·11-s − 74.5·13-s − 0.529·17-s + 89.7·19-s + 58.8·21-s − 174.·23-s + 27·27-s − 275.·29-s + 267.·31-s + 23.6·33-s + 11.3·37-s − 223.·39-s − 384.·41-s + 28.5·43-s − 289.·47-s + 41.8·49-s − 1.58·51-s + 256.·53-s + 269.·57-s + 174.·59-s − 732.·61-s + 176.·63-s + 498.·67-s − 524.·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.05·7-s + 0.333·9-s + 0.216·11-s − 1.59·13-s − 0.00755·17-s + 1.08·19-s + 0.611·21-s − 1.58·23-s + 0.192·27-s − 1.76·29-s + 1.54·31-s + 0.125·33-s + 0.0505·37-s − 0.918·39-s − 1.46·41-s + 0.101·43-s − 0.898·47-s + 0.122·49-s − 0.00436·51-s + 0.664·53-s + 0.626·57-s + 0.384·59-s − 1.53·61-s + 0.353·63-s + 0.908·67-s − 0.914·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
5 \( 1 \)
good7 \( 1 - 19.6T + 343T^{2} \)
11 \( 1 - 7.89T + 1.33e3T^{2} \)
13 \( 1 + 74.5T + 2.19e3T^{2} \)
17 \( 1 + 0.529T + 4.91e3T^{2} \)
19 \( 1 - 89.7T + 6.85e3T^{2} \)
23 \( 1 + 174.T + 1.21e4T^{2} \)
29 \( 1 + 275.T + 2.43e4T^{2} \)
31 \( 1 - 267.T + 2.97e4T^{2} \)
37 \( 1 - 11.3T + 5.06e4T^{2} \)
41 \( 1 + 384.T + 6.89e4T^{2} \)
43 \( 1 - 28.5T + 7.95e4T^{2} \)
47 \( 1 + 289.T + 1.03e5T^{2} \)
53 \( 1 - 256.T + 1.48e5T^{2} \)
59 \( 1 - 174.T + 2.05e5T^{2} \)
61 \( 1 + 732.T + 2.26e5T^{2} \)
67 \( 1 - 498.T + 3.00e5T^{2} \)
71 \( 1 + 763.T + 3.57e5T^{2} \)
73 \( 1 + 927.T + 3.89e5T^{2} \)
79 \( 1 - 217.T + 4.93e5T^{2} \)
83 \( 1 + 21.8T + 5.71e5T^{2} \)
89 \( 1 + 191.T + 7.04e5T^{2} \)
97 \( 1 + 885.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.062576510617368373619053781838, −7.65866211998053826218953327347, −6.91971939297685489503818192279, −5.76293617631337176367180624045, −4.94702336272671704039628625137, −4.28004303564182036451692820630, −3.22530329128024121954870223209, −2.22168123065707872944376818299, −1.47434401571424476442462851172, 0, 1.47434401571424476442462851172, 2.22168123065707872944376818299, 3.22530329128024121954870223209, 4.28004303564182036451692820630, 4.94702336272671704039628625137, 5.76293617631337176367180624045, 6.91971939297685489503818192279, 7.65866211998053826218953327347, 8.062576510617368373619053781838

Graph of the $Z$-function along the critical line