Properties

Label 2-2400-1.1-c3-0-107
Degree $2$
Conductor $2400$
Sign $-1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 11.4·7-s + 9·9-s − 16.0·11-s + 73.9·13-s − 103.·17-s − 27.9·19-s + 34.3·21-s − 112.·23-s + 27·27-s − 241.·29-s + 303.·31-s − 48.0·33-s − 177.·37-s + 221.·39-s + 4.91·41-s − 171.·43-s − 373.·47-s − 211.·49-s − 311.·51-s + 45.4·53-s − 83.8·57-s − 711.·59-s + 567.·61-s + 103.·63-s − 390.·67-s − 338.·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.618·7-s + 0.333·9-s − 0.438·11-s + 1.57·13-s − 1.48·17-s − 0.337·19-s + 0.357·21-s − 1.02·23-s + 0.192·27-s − 1.54·29-s + 1.76·31-s − 0.253·33-s − 0.789·37-s + 0.910·39-s + 0.0187·41-s − 0.607·43-s − 1.15·47-s − 0.617·49-s − 0.855·51-s + 0.117·53-s − 0.194·57-s − 1.56·59-s + 1.19·61-s + 0.206·63-s − 0.712·67-s − 0.590·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
5 \( 1 \)
good7 \( 1 - 11.4T + 343T^{2} \)
11 \( 1 + 16.0T + 1.33e3T^{2} \)
13 \( 1 - 73.9T + 2.19e3T^{2} \)
17 \( 1 + 103.T + 4.91e3T^{2} \)
19 \( 1 + 27.9T + 6.85e3T^{2} \)
23 \( 1 + 112.T + 1.21e4T^{2} \)
29 \( 1 + 241.T + 2.43e4T^{2} \)
31 \( 1 - 303.T + 2.97e4T^{2} \)
37 \( 1 + 177.T + 5.06e4T^{2} \)
41 \( 1 - 4.91T + 6.89e4T^{2} \)
43 \( 1 + 171.T + 7.95e4T^{2} \)
47 \( 1 + 373.T + 1.03e5T^{2} \)
53 \( 1 - 45.4T + 1.48e5T^{2} \)
59 \( 1 + 711.T + 2.05e5T^{2} \)
61 \( 1 - 567.T + 2.26e5T^{2} \)
67 \( 1 + 390.T + 3.00e5T^{2} \)
71 \( 1 + 687.T + 3.57e5T^{2} \)
73 \( 1 - 431.T + 3.89e5T^{2} \)
79 \( 1 - 1.08e3T + 4.93e5T^{2} \)
83 \( 1 + 720.T + 5.71e5T^{2} \)
89 \( 1 + 633.T + 7.04e5T^{2} \)
97 \( 1 + 219.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.377178375290805644172035045924, −7.66966497421114925557130701121, −6.62383387498186539208574223553, −6.02880192843609899162940901003, −4.90413544587068315971811583780, −4.15766420687034564263200125908, −3.33542542118101391845071967878, −2.19288916306872253671018507588, −1.46682280183164767247063406104, 0, 1.46682280183164767247063406104, 2.19288916306872253671018507588, 3.33542542118101391845071967878, 4.15766420687034564263200125908, 4.90413544587068315971811583780, 6.02880192843609899162940901003, 6.62383387498186539208574223553, 7.66966497421114925557130701121, 8.377178375290805644172035045924

Graph of the $Z$-function along the critical line