Properties

Label 2-2400-1.1-c3-0-105
Degree $2$
Conductor $2400$
Sign $-1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 4.63·7-s + 9·9-s + 58.7·11-s − 33.5·13-s − 44.2·17-s − 133.·19-s + 13.9·21-s − 90.0·23-s + 27·27-s + 154.·29-s + 21.0·31-s + 176.·33-s + 38.0·37-s − 100.·39-s + 335.·41-s − 388.·43-s − 267.·47-s − 321.·49-s − 132.·51-s − 445.·53-s − 400.·57-s + 36.6·59-s − 813.·61-s + 41.7·63-s + 41.5·67-s − 270.·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.250·7-s + 0.333·9-s + 1.61·11-s − 0.716·13-s − 0.630·17-s − 1.61·19-s + 0.144·21-s − 0.816·23-s + 0.192·27-s + 0.989·29-s + 0.122·31-s + 0.930·33-s + 0.169·37-s − 0.413·39-s + 1.27·41-s − 1.37·43-s − 0.829·47-s − 0.937·49-s − 0.364·51-s − 1.15·53-s − 0.930·57-s + 0.0807·59-s − 1.70·61-s + 0.0834·63-s + 0.0758·67-s − 0.471·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
5 \( 1 \)
good7 \( 1 - 4.63T + 343T^{2} \)
11 \( 1 - 58.7T + 1.33e3T^{2} \)
13 \( 1 + 33.5T + 2.19e3T^{2} \)
17 \( 1 + 44.2T + 4.91e3T^{2} \)
19 \( 1 + 133.T + 6.85e3T^{2} \)
23 \( 1 + 90.0T + 1.21e4T^{2} \)
29 \( 1 - 154.T + 2.43e4T^{2} \)
31 \( 1 - 21.0T + 2.97e4T^{2} \)
37 \( 1 - 38.0T + 5.06e4T^{2} \)
41 \( 1 - 335.T + 6.89e4T^{2} \)
43 \( 1 + 388.T + 7.95e4T^{2} \)
47 \( 1 + 267.T + 1.03e5T^{2} \)
53 \( 1 + 445.T + 1.48e5T^{2} \)
59 \( 1 - 36.6T + 2.05e5T^{2} \)
61 \( 1 + 813.T + 2.26e5T^{2} \)
67 \( 1 - 41.5T + 3.00e5T^{2} \)
71 \( 1 + 9.99e2T + 3.57e5T^{2} \)
73 \( 1 + 56.3T + 3.89e5T^{2} \)
79 \( 1 + 80.5T + 4.93e5T^{2} \)
83 \( 1 - 577.T + 5.71e5T^{2} \)
89 \( 1 - 679.T + 7.04e5T^{2} \)
97 \( 1 - 193.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.334557868865058079529963567199, −7.55627742077806105227715495838, −6.51853491161420298715920963066, −6.25662965460269013601391321405, −4.69126104854689778342531786203, −4.31377295423595799049801779259, −3.30106552239635956494122244710, −2.21682967288586360785530761200, −1.44722930846223280846137352158, 0, 1.44722930846223280846137352158, 2.21682967288586360785530761200, 3.30106552239635956494122244710, 4.31377295423595799049801779259, 4.69126104854689778342531786203, 6.25662965460269013601391321405, 6.51853491161420298715920963066, 7.55627742077806105227715495838, 8.334557868865058079529963567199

Graph of the $Z$-function along the critical line