Properties

Label 2-2400-1.1-c3-0-104
Degree $2$
Conductor $2400$
Sign $-1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 21.6·7-s + 9·9-s − 21.8·11-s − 70.6·13-s + 54.6·17-s − 76.0·19-s + 64.8·21-s + 89.0·23-s + 27·27-s − 51.8·29-s − 110.·31-s − 65.4·33-s − 9.56·37-s − 211.·39-s + 317.·41-s − 374.·43-s + 347.·47-s + 124.·49-s + 163.·51-s − 159.·53-s − 228.·57-s − 693.·59-s − 684.·61-s + 194.·63-s − 559.·67-s + 267.·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.16·7-s + 0.333·9-s − 0.597·11-s − 1.50·13-s + 0.779·17-s − 0.918·19-s + 0.673·21-s + 0.807·23-s + 0.192·27-s − 0.331·29-s − 0.637·31-s − 0.345·33-s − 0.0425·37-s − 0.870·39-s + 1.20·41-s − 1.32·43-s + 1.07·47-s + 0.361·49-s + 0.450·51-s − 0.413·53-s − 0.530·57-s − 1.53·59-s − 1.43·61-s + 0.388·63-s − 1.02·67-s + 0.466·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
5 \( 1 \)
good7 \( 1 - 21.6T + 343T^{2} \)
11 \( 1 + 21.8T + 1.33e3T^{2} \)
13 \( 1 + 70.6T + 2.19e3T^{2} \)
17 \( 1 - 54.6T + 4.91e3T^{2} \)
19 \( 1 + 76.0T + 6.85e3T^{2} \)
23 \( 1 - 89.0T + 1.21e4T^{2} \)
29 \( 1 + 51.8T + 2.43e4T^{2} \)
31 \( 1 + 110.T + 2.97e4T^{2} \)
37 \( 1 + 9.56T + 5.06e4T^{2} \)
41 \( 1 - 317.T + 6.89e4T^{2} \)
43 \( 1 + 374.T + 7.95e4T^{2} \)
47 \( 1 - 347.T + 1.03e5T^{2} \)
53 \( 1 + 159.T + 1.48e5T^{2} \)
59 \( 1 + 693.T + 2.05e5T^{2} \)
61 \( 1 + 684.T + 2.26e5T^{2} \)
67 \( 1 + 559.T + 3.00e5T^{2} \)
71 \( 1 + 517.T + 3.57e5T^{2} \)
73 \( 1 - 745.T + 3.89e5T^{2} \)
79 \( 1 - 120.T + 4.93e5T^{2} \)
83 \( 1 - 341.T + 5.71e5T^{2} \)
89 \( 1 + 706.T + 7.04e5T^{2} \)
97 \( 1 - 171.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.024923201303592270426956947595, −7.68655838048480490719287168378, −6.94822049444735092822475414588, −5.71952359803259312130733733159, −4.92768681886135902456020369750, −4.36539581881456291816613764738, −3.12651838757813058459719523831, −2.30881927917321015947986167585, −1.43624977944600500256538622848, 0, 1.43624977944600500256538622848, 2.30881927917321015947986167585, 3.12651838757813058459719523831, 4.36539581881456291816613764738, 4.92768681886135902456020369750, 5.71952359803259312130733733159, 6.94822049444735092822475414588, 7.68655838048480490719287168378, 8.024923201303592270426956947595

Graph of the $Z$-function along the critical line