Properties

Label 2-2400-1.1-c3-0-103
Degree $2$
Conductor $2400$
Sign $-1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 2.13·7-s + 9·9-s + 24.4·11-s + 34.0·13-s − 123.·17-s + 9.17·19-s + 6.39·21-s − 142.·23-s + 27·27-s + 140.·29-s − 158.·31-s + 73.3·33-s + 58.5·37-s + 102.·39-s − 108.·41-s + 246.·43-s − 466.·47-s − 338.·49-s − 369.·51-s − 312.·53-s + 27.5·57-s − 410.·59-s − 44.5·61-s + 19.1·63-s + 368.·67-s − 426.·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.115·7-s + 0.333·9-s + 0.670·11-s + 0.726·13-s − 1.75·17-s + 0.110·19-s + 0.0664·21-s − 1.28·23-s + 0.192·27-s + 0.899·29-s − 0.919·31-s + 0.386·33-s + 0.260·37-s + 0.419·39-s − 0.414·41-s + 0.874·43-s − 1.44·47-s − 0.986·49-s − 1.01·51-s − 0.810·53-s + 0.0639·57-s − 0.906·59-s − 0.0935·61-s + 0.0383·63-s + 0.671·67-s − 0.744·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
5 \( 1 \)
good7 \( 1 - 2.13T + 343T^{2} \)
11 \( 1 - 24.4T + 1.33e3T^{2} \)
13 \( 1 - 34.0T + 2.19e3T^{2} \)
17 \( 1 + 123.T + 4.91e3T^{2} \)
19 \( 1 - 9.17T + 6.85e3T^{2} \)
23 \( 1 + 142.T + 1.21e4T^{2} \)
29 \( 1 - 140.T + 2.43e4T^{2} \)
31 \( 1 + 158.T + 2.97e4T^{2} \)
37 \( 1 - 58.5T + 5.06e4T^{2} \)
41 \( 1 + 108.T + 6.89e4T^{2} \)
43 \( 1 - 246.T + 7.95e4T^{2} \)
47 \( 1 + 466.T + 1.03e5T^{2} \)
53 \( 1 + 312.T + 1.48e5T^{2} \)
59 \( 1 + 410.T + 2.05e5T^{2} \)
61 \( 1 + 44.5T + 2.26e5T^{2} \)
67 \( 1 - 368.T + 3.00e5T^{2} \)
71 \( 1 - 108.T + 3.57e5T^{2} \)
73 \( 1 + 627.T + 3.89e5T^{2} \)
79 \( 1 + 196.T + 4.93e5T^{2} \)
83 \( 1 - 107.T + 5.71e5T^{2} \)
89 \( 1 - 685.T + 7.04e5T^{2} \)
97 \( 1 - 73.7T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.340734913848873686519949670608, −7.57402041925346292628804169890, −6.56485767545256241081131625948, −6.16314487139736682460183101701, −4.85313983355624663590204711627, −4.14118690842122804712051537088, −3.35050632246904929483271522058, −2.23165124563993662882974826605, −1.42673747295089614197833558787, 0, 1.42673747295089614197833558787, 2.23165124563993662882974826605, 3.35050632246904929483271522058, 4.14118690842122804712051537088, 4.85313983355624663590204711627, 6.16314487139736682460183101701, 6.56485767545256241081131625948, 7.57402041925346292628804169890, 8.340734913848873686519949670608

Graph of the $Z$-function along the critical line