Properties

Label 2-2400-1.1-c3-0-0
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 18.8·7-s + 9·9-s − 63.2·11-s − 1.58·13-s − 135.·17-s + 97.2·19-s + 56.4·21-s − 41.1·23-s − 27·27-s − 207.·29-s + 193.·31-s + 189.·33-s − 339.·37-s + 4.74·39-s − 490.·41-s − 74.3·43-s − 544.·47-s + 10.6·49-s + 405.·51-s − 663.·53-s − 291.·57-s + 344.·59-s + 5.16·61-s − 169.·63-s + 671.·67-s + 123.·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.01·7-s + 0.333·9-s − 1.73·11-s − 0.0337·13-s − 1.92·17-s + 1.17·19-s + 0.586·21-s − 0.373·23-s − 0.192·27-s − 1.32·29-s + 1.12·31-s + 1.00·33-s − 1.50·37-s + 0.0194·39-s − 1.86·41-s − 0.263·43-s − 1.68·47-s + 0.0311·49-s + 1.11·51-s − 1.72·53-s − 0.677·57-s + 0.760·59-s + 0.0108·61-s − 0.338·63-s + 1.22·67-s + 0.215·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.09063567141\)
\(L(\frac12)\) \(\approx\) \(0.09063567141\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 \)
good7 \( 1 + 18.8T + 343T^{2} \)
11 \( 1 + 63.2T + 1.33e3T^{2} \)
13 \( 1 + 1.58T + 2.19e3T^{2} \)
17 \( 1 + 135.T + 4.91e3T^{2} \)
19 \( 1 - 97.2T + 6.85e3T^{2} \)
23 \( 1 + 41.1T + 1.21e4T^{2} \)
29 \( 1 + 207.T + 2.43e4T^{2} \)
31 \( 1 - 193.T + 2.97e4T^{2} \)
37 \( 1 + 339.T + 5.06e4T^{2} \)
41 \( 1 + 490.T + 6.89e4T^{2} \)
43 \( 1 + 74.3T + 7.95e4T^{2} \)
47 \( 1 + 544.T + 1.03e5T^{2} \)
53 \( 1 + 663.T + 1.48e5T^{2} \)
59 \( 1 - 344.T + 2.05e5T^{2} \)
61 \( 1 - 5.16T + 2.26e5T^{2} \)
67 \( 1 - 671.T + 3.00e5T^{2} \)
71 \( 1 - 425.T + 3.57e5T^{2} \)
73 \( 1 - 94.8T + 3.89e5T^{2} \)
79 \( 1 - 770.T + 4.93e5T^{2} \)
83 \( 1 + 589.T + 5.71e5T^{2} \)
89 \( 1 + 409.T + 7.04e5T^{2} \)
97 \( 1 - 152.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.547109184944987388632731873936, −7.83454646035294748779830243560, −6.84457358335367906178945440305, −6.45436284170665599396584918275, −5.30773514908719746013956230472, −4.94085548259269011795793503821, −3.67863977045039690860737019299, −2.83963705787574397898698977632, −1.81793294994084774693631532921, −0.12921856096556035050914159383, 0.12921856096556035050914159383, 1.81793294994084774693631532921, 2.83963705787574397898698977632, 3.67863977045039690860737019299, 4.94085548259269011795793503821, 5.30773514908719746013956230472, 6.45436284170665599396584918275, 6.84457358335367906178945440305, 7.83454646035294748779830243560, 8.547109184944987388632731873936

Graph of the $Z$-function along the critical line