L(s) = 1 | + 3-s + 7-s + 9-s − 4·11-s − 3·13-s − 4·17-s − 19-s + 21-s + 27-s − 8·29-s + 31-s − 4·33-s + 2·37-s − 3·39-s + 2·41-s − 11·43-s − 2·47-s − 6·49-s − 4·51-s − 10·53-s − 57-s − 6·59-s + 11·61-s + 63-s + 9·67-s + 6·71-s − 14·73-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.377·7-s + 1/3·9-s − 1.20·11-s − 0.832·13-s − 0.970·17-s − 0.229·19-s + 0.218·21-s + 0.192·27-s − 1.48·29-s + 0.179·31-s − 0.696·33-s + 0.328·37-s − 0.480·39-s + 0.312·41-s − 1.67·43-s − 0.291·47-s − 6/7·49-s − 0.560·51-s − 1.37·53-s − 0.132·57-s − 0.781·59-s + 1.40·61-s + 0.125·63-s + 1.09·67-s + 0.712·71-s − 1.63·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - T + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 3 T + p T^{2} \) |
| 17 | \( 1 + 4 T + p T^{2} \) |
| 19 | \( 1 + T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 8 T + p T^{2} \) |
| 31 | \( 1 - T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 + 11 T + p T^{2} \) |
| 47 | \( 1 + 2 T + p T^{2} \) |
| 53 | \( 1 + 10 T + p T^{2} \) |
| 59 | \( 1 + 6 T + p T^{2} \) |
| 61 | \( 1 - 11 T + p T^{2} \) |
| 67 | \( 1 - 9 T + p T^{2} \) |
| 71 | \( 1 - 6 T + p T^{2} \) |
| 73 | \( 1 + 14 T + p T^{2} \) |
| 79 | \( 1 - 16 T + p T^{2} \) |
| 83 | \( 1 - 2 T + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 + 11 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.430815690871999608253662507706, −7.908565769649762575481887809066, −7.21207563951617328702489162850, −6.34148953270907415258289494499, −5.20094162310079706511563061578, −4.69054360413855447420301695810, −3.59388695481838457702722715252, −2.58291128002808959360122509250, −1.84886089377979123884783673436, 0,
1.84886089377979123884783673436, 2.58291128002808959360122509250, 3.59388695481838457702722715252, 4.69054360413855447420301695810, 5.20094162310079706511563061578, 6.34148953270907415258289494499, 7.21207563951617328702489162850, 7.908565769649762575481887809066, 8.430815690871999608253662507706