L(s) = 1 | + (−0.750 − 1.19i)2-s + (−0.707 + 0.707i)3-s + (−0.874 + 1.79i)4-s + (1.07 − 1.95i)5-s + (1.37 + 0.317i)6-s − 1.22·7-s + (2.81 − 0.302i)8-s − 1.00i·9-s + (−3.15 + 0.178i)10-s + (1.38 − 1.38i)11-s + (−0.654 − 1.89i)12-s + (2.12 − 2.12i)13-s + (0.916 + 1.46i)14-s + (0.623 + 2.14i)15-s + (−2.47 − 3.14i)16-s − 6.00i·17-s + ⋯ |
L(s) = 1 | + (−0.530 − 0.847i)2-s + (−0.408 + 0.408i)3-s + (−0.437 + 0.899i)4-s + (0.481 − 0.876i)5-s + (0.562 + 0.129i)6-s − 0.461·7-s + (0.994 − 0.106i)8-s − 0.333i·9-s + (−0.998 + 0.0565i)10-s + (0.416 − 0.416i)11-s + (−0.188 − 0.545i)12-s + (0.588 − 0.588i)13-s + (0.244 + 0.391i)14-s + (0.161 + 0.554i)15-s + (−0.618 − 0.786i)16-s − 1.45i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.227 + 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.227 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.494402 - 0.622986i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.494402 - 0.622986i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.750 + 1.19i)T \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (-1.07 + 1.95i)T \) |
good | 7 | \( 1 + 1.22T + 7T^{2} \) |
| 11 | \( 1 + (-1.38 + 1.38i)T - 11iT^{2} \) |
| 13 | \( 1 + (-2.12 + 2.12i)T - 13iT^{2} \) |
| 17 | \( 1 + 6.00iT - 17T^{2} \) |
| 19 | \( 1 + (3.06 + 3.06i)T + 19iT^{2} \) |
| 23 | \( 1 - 2.90T + 23T^{2} \) |
| 29 | \( 1 + (-3.18 - 3.18i)T + 29iT^{2} \) |
| 31 | \( 1 + 3.88T + 31T^{2} \) |
| 37 | \( 1 + (-2.44 - 2.44i)T + 37iT^{2} \) |
| 41 | \( 1 + 2.38iT - 41T^{2} \) |
| 43 | \( 1 + (-9.00 - 9.00i)T + 43iT^{2} \) |
| 47 | \( 1 + 0.586iT - 47T^{2} \) |
| 53 | \( 1 + (2.36 + 2.36i)T + 53iT^{2} \) |
| 59 | \( 1 + (-8.43 + 8.43i)T - 59iT^{2} \) |
| 61 | \( 1 + (-9.98 - 9.98i)T + 61iT^{2} \) |
| 67 | \( 1 + (3.82 - 3.82i)T - 67iT^{2} \) |
| 71 | \( 1 - 11.5iT - 71T^{2} \) |
| 73 | \( 1 - 1.31T + 73T^{2} \) |
| 79 | \( 1 + 12.5T + 79T^{2} \) |
| 83 | \( 1 + (2.91 - 2.91i)T - 83iT^{2} \) |
| 89 | \( 1 + 9.58iT - 89T^{2} \) |
| 97 | \( 1 - 9.45iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.65563865328960228983654612657, −10.94042883475728588895253290375, −9.850704328408175581080899072159, −9.170342999966755209124026818838, −8.397532805968769230872711803165, −6.85438306526993844799951769115, −5.42978436492462153882613872718, −4.32279771300566024875871651815, −2.89120050012833134741477467682, −0.865096743341993992647880739877,
1.82615547323473480906988739677, 4.04929224825462626145114113248, 5.80874842624689226435455719634, 6.39702738360576554895217837104, 7.19437639530769826113861904896, 8.393722485981994868473579765092, 9.487278649906544689897875933149, 10.42836387488373034508990707379, 11.11178501201144898058097032896, 12.55186031873485233147402503066