Properties

Label 2-240-80.29-c1-0-12
Degree $2$
Conductor $240$
Sign $0.606 - 0.795i$
Analytic cond. $1.91640$
Root an. cond. $1.38434$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.22 + 0.710i)2-s + (0.707 − 0.707i)3-s + (0.991 + 1.73i)4-s + (0.607 + 2.15i)5-s + (1.36 − 0.362i)6-s − 2.25·7-s + (−0.0216 + 2.82i)8-s − 1.00i·9-s + (−0.785 + 3.06i)10-s + (−1.66 + 1.66i)11-s + (1.92 + 0.527i)12-s + (4.76 − 4.76i)13-s + (−2.75 − 1.60i)14-s + (1.95 + 1.09i)15-s + (−2.03 + 3.44i)16-s − 6.99i·17-s + ⋯
L(s)  = 1  + (0.864 + 0.502i)2-s + (0.408 − 0.408i)3-s + (0.495 + 0.868i)4-s + (0.271 + 0.962i)5-s + (0.558 − 0.148i)6-s − 0.851·7-s + (−0.00765 + 0.999i)8-s − 0.333i·9-s + (−0.248 + 0.968i)10-s + (−0.500 + 0.500i)11-s + (0.556 + 0.152i)12-s + (1.32 − 1.32i)13-s + (−0.736 − 0.427i)14-s + (0.503 + 0.281i)15-s + (−0.508 + 0.860i)16-s − 1.69i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.606 - 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.606 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(240\)    =    \(2^{4} \cdot 3 \cdot 5\)
Sign: $0.606 - 0.795i$
Analytic conductor: \(1.91640\)
Root analytic conductor: \(1.38434\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{240} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 240,\ (\ :1/2),\ 0.606 - 0.795i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.91596 + 0.948607i\)
\(L(\frac12)\) \(\approx\) \(1.91596 + 0.948607i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.22 - 0.710i)T \)
3 \( 1 + (-0.707 + 0.707i)T \)
5 \( 1 + (-0.607 - 2.15i)T \)
good7 \( 1 + 2.25T + 7T^{2} \)
11 \( 1 + (1.66 - 1.66i)T - 11iT^{2} \)
13 \( 1 + (-4.76 + 4.76i)T - 13iT^{2} \)
17 \( 1 + 6.99iT - 17T^{2} \)
19 \( 1 + (2.66 + 2.66i)T + 19iT^{2} \)
23 \( 1 - 4.41T + 23T^{2} \)
29 \( 1 + (-2.59 - 2.59i)T + 29iT^{2} \)
31 \( 1 + 3.93T + 31T^{2} \)
37 \( 1 + (-2.01 - 2.01i)T + 37iT^{2} \)
41 \( 1 - 4.50iT - 41T^{2} \)
43 \( 1 + (7.14 + 7.14i)T + 43iT^{2} \)
47 \( 1 - 10.1iT - 47T^{2} \)
53 \( 1 + (0.649 + 0.649i)T + 53iT^{2} \)
59 \( 1 + (-5.64 + 5.64i)T - 59iT^{2} \)
61 \( 1 + (5.00 + 5.00i)T + 61iT^{2} \)
67 \( 1 + (4.95 - 4.95i)T - 67iT^{2} \)
71 \( 1 - 2.33iT - 71T^{2} \)
73 \( 1 - 2.18T + 73T^{2} \)
79 \( 1 - 6.38T + 79T^{2} \)
83 \( 1 + (-5.25 + 5.25i)T - 83iT^{2} \)
89 \( 1 - 15.7iT - 89T^{2} \)
97 \( 1 - 4.61iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.74737190269052831607027506725, −11.40565672242545273937899526271, −10.54853914168492150813817864156, −9.261811153948597184607472604515, −7.992474463452398623935093822980, −7.02413264500021888177132465955, −6.36697369893804993054936243245, −5.15550467279993417652683512438, −3.35643328473112885445282635538, −2.72202334598460095466742234201, 1.76040209392227235255643333080, 3.51243303274285753886472609696, 4.32436504341423367260712996923, 5.72393693489499974148610746947, 6.48901753846050436148970260757, 8.384851542490596636641585592257, 9.165086407989721668501255780227, 10.21233677666840746761978033410, 11.02932127117143942287895015746, 12.20114394223784564552653411418

Graph of the $Z$-function along the critical line