L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.707 − 0.707i)3-s + 1.00i·4-s + (0.707 − 0.707i)5-s − 1.00i·6-s + (−0.707 + 0.707i)8-s + 1.00i·9-s + 1.00·10-s + (0.707 − 0.707i)12-s − 1.00·15-s − 1.00·16-s − 1.41·17-s + (−0.707 + 0.707i)18-s + (−1 − i)19-s + (0.707 + 0.707i)20-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.707 − 0.707i)3-s + 1.00i·4-s + (0.707 − 0.707i)5-s − 1.00i·6-s + (−0.707 + 0.707i)8-s + 1.00i·9-s + 1.00·10-s + (0.707 − 0.707i)12-s − 1.00·15-s − 1.00·16-s − 1.41·17-s + (−0.707 + 0.707i)18-s + (−1 − i)19-s + (0.707 + 0.707i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 - 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 - 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8766671503\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8766671503\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 + 1.41T + T^{2} \) |
| 19 | \( 1 + (1 + i)T + iT^{2} \) |
| 23 | \( 1 - 1.41iT - T^{2} \) |
| 29 | \( 1 - iT^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 - 1.41T + T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (-1 - i)T + iT^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - 2T + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.73502049729843391068627570637, −11.73527978311156713498965175251, −10.84841673103753683404825725208, −9.243675452755684177654724180201, −8.332017620077728990333548048250, −7.10643469094892591735622019280, −6.28632739387403651003711591542, −5.34247706028749470396480426010, −4.41427234721809658050812687514, −2.24575443364944395837814610849,
2.30617234132287283414117722721, 3.82307167587796902320542056164, 4.88125479089220107901179134265, 6.10824185492806981195453492813, 6.64680116357307140519216654282, 8.841082183980231248155593852572, 9.869253903909641976622981782502, 10.64097464556387682232035748743, 11.11131220770607798226918165643, 12.26721417849261293596645460060