L(s) = 1 | + (0.707 − 2.91i)3-s + (−2.82 − 4.12i)5-s + 5.83i·7-s + (−8 − 4.12i)9-s − 16.4i·11-s + (−14.0 + 5.33i)15-s − 11.3·17-s − 12·19-s + (17 + 4.12i)21-s − 24.0·23-s + (−8.99 + 23.3i)25-s + (−17.6 + 20.4i)27-s + 32·31-s + (−48.0 − 11.6i)33-s + (24.0 − 16.4i)35-s + ⋯ |
L(s) = 1 | + (0.235 − 0.971i)3-s + (−0.565 − 0.824i)5-s + 0.832i·7-s + (−0.888 − 0.458i)9-s − 1.49i·11-s + (−0.934 + 0.355i)15-s − 0.665·17-s − 0.631·19-s + (0.809 + 0.196i)21-s − 1.04·23-s + (−0.359 + 0.932i)25-s + (−0.654 + 0.755i)27-s + 1.03·31-s + (−1.45 − 0.353i)33-s + (0.686 − 0.471i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.934 + 0.355i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.934 + 0.355i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.178377 - 0.971095i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.178377 - 0.971095i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 2.91i)T \) |
| 5 | \( 1 + (2.82 + 4.12i)T \) |
good | 7 | \( 1 - 5.83iT - 49T^{2} \) |
| 11 | \( 1 + 16.4iT - 121T^{2} \) |
| 13 | \( 1 - 169T^{2} \) |
| 17 | \( 1 + 11.3T + 289T^{2} \) |
| 19 | \( 1 + 12T + 361T^{2} \) |
| 23 | \( 1 + 24.0T + 529T^{2} \) |
| 29 | \( 1 - 841T^{2} \) |
| 31 | \( 1 - 32T + 961T^{2} \) |
| 37 | \( 1 + 23.3iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 57.7iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 40.8iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 35.3T + 2.20e3T^{2} \) |
| 53 | \( 1 - 67.8T + 2.80e3T^{2} \) |
| 59 | \( 1 + 16.4iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 16T + 3.72e3T^{2} \) |
| 67 | \( 1 + 5.83iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 5.04e3T^{2} \) |
| 73 | \( 1 + 116. iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 72T + 6.24e3T^{2} \) |
| 83 | \( 1 - 43.8T + 6.88e3T^{2} \) |
| 89 | \( 1 + 65.9iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 163. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85800381133044555897973961326, −10.77554310695504790355079426668, −8.947657051201536855546528010379, −8.638606284034232253706828129191, −7.69838798651978055069919606691, −6.31568962816539996506819106434, −5.46442554630693547659182853113, −3.79214646943293589926134454599, −2.27096600072480738838875920779, −0.49165751528149475861300559833,
2.51930990812172090166982949046, 3.99806944319799776051741960806, 4.58988458551157477925149160282, 6.38157870445679999196167852734, 7.42071027170928327873516197194, 8.372593093865129606442053012032, 9.796047659968031750361243571807, 10.28076721636738456696965940091, 11.17733981436670646176940949400, 12.10597697591761278504808641380