Properties

Label 2-240-1.1-c3-0-6
Degree $2$
Conductor $240$
Sign $1$
Analytic cond. $14.1604$
Root an. cond. $3.76303$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5·5-s + 16·7-s + 9·9-s + 28·11-s − 26·13-s + 15·15-s − 62·17-s + 68·19-s + 48·21-s + 208·23-s + 25·25-s + 27·27-s − 58·29-s − 160·31-s + 84·33-s + 80·35-s + 270·37-s − 78·39-s + 282·41-s − 76·43-s + 45·45-s + 280·47-s − 87·49-s − 186·51-s − 210·53-s + 140·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 0.863·7-s + 1/3·9-s + 0.767·11-s − 0.554·13-s + 0.258·15-s − 0.884·17-s + 0.821·19-s + 0.498·21-s + 1.88·23-s + 1/5·25-s + 0.192·27-s − 0.371·29-s − 0.926·31-s + 0.443·33-s + 0.386·35-s + 1.19·37-s − 0.320·39-s + 1.07·41-s − 0.269·43-s + 0.149·45-s + 0.868·47-s − 0.253·49-s − 0.510·51-s − 0.544·53-s + 0.343·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(240\)    =    \(2^{4} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(14.1604\)
Root analytic conductor: \(3.76303\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 240,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.665140859\)
\(L(\frac12)\) \(\approx\) \(2.665140859\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 - p T \)
good7 \( 1 - 16 T + p^{3} T^{2} \)
11 \( 1 - 28 T + p^{3} T^{2} \)
13 \( 1 + 2 p T + p^{3} T^{2} \)
17 \( 1 + 62 T + p^{3} T^{2} \)
19 \( 1 - 68 T + p^{3} T^{2} \)
23 \( 1 - 208 T + p^{3} T^{2} \)
29 \( 1 + 2 p T + p^{3} T^{2} \)
31 \( 1 + 160 T + p^{3} T^{2} \)
37 \( 1 - 270 T + p^{3} T^{2} \)
41 \( 1 - 282 T + p^{3} T^{2} \)
43 \( 1 + 76 T + p^{3} T^{2} \)
47 \( 1 - 280 T + p^{3} T^{2} \)
53 \( 1 + 210 T + p^{3} T^{2} \)
59 \( 1 + 196 T + p^{3} T^{2} \)
61 \( 1 - 742 T + p^{3} T^{2} \)
67 \( 1 + 836 T + p^{3} T^{2} \)
71 \( 1 - 504 T + p^{3} T^{2} \)
73 \( 1 + 1062 T + p^{3} T^{2} \)
79 \( 1 + 768 T + p^{3} T^{2} \)
83 \( 1 - 1052 T + p^{3} T^{2} \)
89 \( 1 + 726 T + p^{3} T^{2} \)
97 \( 1 + 1406 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.56134148656735557168942010333, −10.82165315964331447991349244707, −9.463433671064582827237795677151, −8.958853374898012048455547699891, −7.71299994166706678632129253201, −6.81558311800312019467515407985, −5.36293781965134060438391282552, −4.27287616417712267745955780791, −2.72404022815463313396267882602, −1.36261459126261242531345775005, 1.36261459126261242531345775005, 2.72404022815463313396267882602, 4.27287616417712267745955780791, 5.36293781965134060438391282552, 6.81558311800312019467515407985, 7.71299994166706678632129253201, 8.958853374898012048455547699891, 9.463433671064582827237795677151, 10.82165315964331447991349244707, 11.56134148656735557168942010333

Graph of the $Z$-function along the critical line