Properties

Label 2-24-1.1-c21-0-7
Degree $2$
Conductor $24$
Sign $1$
Analytic cond. $67.0745$
Root an. cond. $8.18990$
Motivic weight $21$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.90e4·3-s + 2.53e7·5-s + 1.44e9·7-s + 3.48e9·9-s + 1.01e11·11-s + 7.80e11·13-s + 1.49e12·15-s + 3.44e12·17-s − 2.35e13·19-s + 8.56e13·21-s + 2.44e13·23-s + 1.64e14·25-s + 2.05e14·27-s − 7.98e14·29-s − 2.09e15·31-s + 5.98e15·33-s + 3.67e16·35-s − 4.00e16·37-s + 4.61e16·39-s − 1.03e17·41-s − 2.02e17·43-s + 8.83e16·45-s − 6.52e17·47-s + 1.54e18·49-s + 2.03e17·51-s + 7.19e17·53-s + 2.56e18·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.16·5-s + 1.94·7-s + 0.333·9-s + 1.17·11-s + 1.57·13-s + 0.669·15-s + 0.413·17-s − 0.881·19-s + 1.12·21-s + 0.123·23-s + 0.345·25-s + 0.192·27-s − 0.352·29-s − 0.459·31-s + 0.680·33-s + 2.25·35-s − 1.36·37-s + 0.906·39-s − 1.20·41-s − 1.42·43-s + 0.386·45-s − 1.80·47-s + 2.76·49-s + 0.239·51-s + 0.564·53-s + 1.36·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(24\)    =    \(2^{3} \cdot 3\)
Sign: $1$
Analytic conductor: \(67.0745\)
Root analytic conductor: \(8.18990\)
Motivic weight: \(21\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 24,\ (\ :21/2),\ 1)\)

Particular Values

\(L(11)\) \(\approx\) \(4.941694582\)
\(L(\frac12)\) \(\approx\) \(4.941694582\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 5.90e4T \)
good5 \( 1 - 2.53e7T + 4.76e14T^{2} \)
7 \( 1 - 1.44e9T + 5.58e17T^{2} \)
11 \( 1 - 1.01e11T + 7.40e21T^{2} \)
13 \( 1 - 7.80e11T + 2.47e23T^{2} \)
17 \( 1 - 3.44e12T + 6.90e25T^{2} \)
19 \( 1 + 2.35e13T + 7.14e26T^{2} \)
23 \( 1 - 2.44e13T + 3.94e28T^{2} \)
29 \( 1 + 7.98e14T + 5.13e30T^{2} \)
31 \( 1 + 2.09e15T + 2.08e31T^{2} \)
37 \( 1 + 4.00e16T + 8.55e32T^{2} \)
41 \( 1 + 1.03e17T + 7.38e33T^{2} \)
43 \( 1 + 2.02e17T + 2.00e34T^{2} \)
47 \( 1 + 6.52e17T + 1.30e35T^{2} \)
53 \( 1 - 7.19e17T + 1.62e36T^{2} \)
59 \( 1 + 5.11e18T + 1.54e37T^{2} \)
61 \( 1 + 2.91e18T + 3.10e37T^{2} \)
67 \( 1 - 2.16e19T + 2.22e38T^{2} \)
71 \( 1 + 2.65e18T + 7.52e38T^{2} \)
73 \( 1 + 3.94e19T + 1.34e39T^{2} \)
79 \( 1 - 2.10e19T + 7.08e39T^{2} \)
83 \( 1 - 2.17e20T + 1.99e40T^{2} \)
89 \( 1 - 1.76e20T + 8.65e40T^{2} \)
97 \( 1 - 5.80e20T + 5.27e41T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.42987294442224596600540761655, −11.66954180465573952377203086287, −10.53616176521790789069003177479, −9.011128758526150905752310866511, −8.202847281696970620950001677149, −6.48090680874521262859276456712, −5.12253762421639653757111922168, −3.72094058930182633044603103482, −1.73379655959949628485345976515, −1.50277133174584964055773702453, 1.50277133174584964055773702453, 1.73379655959949628485345976515, 3.72094058930182633044603103482, 5.12253762421639653757111922168, 6.48090680874521262859276456712, 8.202847281696970620950001677149, 9.011128758526150905752310866511, 10.53616176521790789069003177479, 11.66954180465573952377203086287, 13.42987294442224596600540761655

Graph of the $Z$-function along the critical line