L(s) = 1 | − 5.90e4·3-s − 8.90e6·5-s + 5.87e8·7-s + 3.48e9·9-s − 1.42e11·11-s + 1.49e11·13-s + 5.26e11·15-s + 9.95e12·17-s − 5.02e12·19-s − 3.47e13·21-s + 3.25e14·23-s − 3.97e14·25-s − 2.05e14·27-s + 1.07e15·29-s + 3.98e15·31-s + 8.40e15·33-s − 5.23e15·35-s − 3.35e16·37-s − 8.80e15·39-s + 4.54e16·41-s − 8.38e16·43-s − 3.10e16·45-s − 5.34e16·47-s − 2.13e17·49-s − 5.87e17·51-s + 1.14e18·53-s + 1.26e18·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.407·5-s + 0.786·7-s + 0.333·9-s − 1.65·11-s + 0.299·13-s + 0.235·15-s + 1.19·17-s − 0.188·19-s − 0.454·21-s + 1.63·23-s − 0.833·25-s − 0.192·27-s + 0.472·29-s + 0.873·31-s + 0.955·33-s − 0.320·35-s − 1.14·37-s − 0.173·39-s + 0.529·41-s − 0.591·43-s − 0.135·45-s − 0.148·47-s − 0.381·49-s − 0.691·51-s + 0.896·53-s + 0.674·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(11)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{23}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 5.90e4T \) |
good | 5 | \( 1 + 8.90e6T + 4.76e14T^{2} \) |
| 7 | \( 1 - 5.87e8T + 5.58e17T^{2} \) |
| 11 | \( 1 + 1.42e11T + 7.40e21T^{2} \) |
| 13 | \( 1 - 1.49e11T + 2.47e23T^{2} \) |
| 17 | \( 1 - 9.95e12T + 6.90e25T^{2} \) |
| 19 | \( 1 + 5.02e12T + 7.14e26T^{2} \) |
| 23 | \( 1 - 3.25e14T + 3.94e28T^{2} \) |
| 29 | \( 1 - 1.07e15T + 5.13e30T^{2} \) |
| 31 | \( 1 - 3.98e15T + 2.08e31T^{2} \) |
| 37 | \( 1 + 3.35e16T + 8.55e32T^{2} \) |
| 41 | \( 1 - 4.54e16T + 7.38e33T^{2} \) |
| 43 | \( 1 + 8.38e16T + 2.00e34T^{2} \) |
| 47 | \( 1 + 5.34e16T + 1.30e35T^{2} \) |
| 53 | \( 1 - 1.14e18T + 1.62e36T^{2} \) |
| 59 | \( 1 + 5.97e18T + 1.54e37T^{2} \) |
| 61 | \( 1 - 4.12e17T + 3.10e37T^{2} \) |
| 67 | \( 1 + 2.42e19T + 2.22e38T^{2} \) |
| 71 | \( 1 - 7.25e16T + 7.52e38T^{2} \) |
| 73 | \( 1 + 2.97e19T + 1.34e39T^{2} \) |
| 79 | \( 1 + 5.78e19T + 7.08e39T^{2} \) |
| 83 | \( 1 + 2.48e20T + 1.99e40T^{2} \) |
| 89 | \( 1 + 5.56e19T + 8.65e40T^{2} \) |
| 97 | \( 1 + 8.39e20T + 5.27e41T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.30182089701715984222073848654, −11.14965760894879747932707324007, −10.19236814942041903214563587048, −8.335302467683841981650666925753, −7.35235790111697782128860285239, −5.62189189686237243091434944827, −4.67388598607778752089276834617, −2.98258108472165282471093207779, −1.32041598908433861612565077638, 0,
1.32041598908433861612565077638, 2.98258108472165282471093207779, 4.67388598607778752089276834617, 5.62189189686237243091434944827, 7.35235790111697782128860285239, 8.335302467683841981650666925753, 10.19236814942041903214563587048, 11.14965760894879747932707324007, 12.30182089701715984222073848654