Properties

Label 2-23e2-1.1-c3-0-97
Degree $2$
Conductor $529$
Sign $-1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.24·2-s − 4.41·3-s + 9.98·4-s − 7.80·5-s − 18.7·6-s + 27.0·7-s + 8.43·8-s − 7.48·9-s − 33.1·10-s − 35.2·11-s − 44.1·12-s + 58.1·13-s + 114.·14-s + 34.4·15-s − 44.1·16-s − 98.3·17-s − 31.7·18-s + 35.3·19-s − 77.9·20-s − 119.·21-s − 149.·22-s − 37.2·24-s − 64.0·25-s + 246.·26-s + 152.·27-s + 270.·28-s − 235.·29-s + ⋯
L(s)  = 1  + 1.49·2-s − 0.850·3-s + 1.24·4-s − 0.698·5-s − 1.27·6-s + 1.46·7-s + 0.372·8-s − 0.277·9-s − 1.04·10-s − 0.966·11-s − 1.06·12-s + 1.24·13-s + 2.19·14-s + 0.593·15-s − 0.689·16-s − 1.40·17-s − 0.415·18-s + 0.426·19-s − 0.871·20-s − 1.24·21-s − 1.44·22-s − 0.317·24-s − 0.512·25-s + 1.86·26-s + 1.08·27-s + 1.82·28-s − 1.50·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 - 4.24T + 8T^{2} \)
3 \( 1 + 4.41T + 27T^{2} \)
5 \( 1 + 7.80T + 125T^{2} \)
7 \( 1 - 27.0T + 343T^{2} \)
11 \( 1 + 35.2T + 1.33e3T^{2} \)
13 \( 1 - 58.1T + 2.19e3T^{2} \)
17 \( 1 + 98.3T + 4.91e3T^{2} \)
19 \( 1 - 35.3T + 6.85e3T^{2} \)
29 \( 1 + 235.T + 2.43e4T^{2} \)
31 \( 1 + 55.0T + 2.97e4T^{2} \)
37 \( 1 + 401.T + 5.06e4T^{2} \)
41 \( 1 + 59.2T + 6.89e4T^{2} \)
43 \( 1 + 11.2T + 7.95e4T^{2} \)
47 \( 1 + 103.T + 1.03e5T^{2} \)
53 \( 1 - 351.T + 1.48e5T^{2} \)
59 \( 1 + 547.T + 2.05e5T^{2} \)
61 \( 1 + 478.T + 2.26e5T^{2} \)
67 \( 1 + 14.3T + 3.00e5T^{2} \)
71 \( 1 - 843.T + 3.57e5T^{2} \)
73 \( 1 - 118.T + 3.89e5T^{2} \)
79 \( 1 - 388.T + 4.93e5T^{2} \)
83 \( 1 - 62.9T + 5.71e5T^{2} \)
89 \( 1 + 678.T + 7.04e5T^{2} \)
97 \( 1 + 421.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.89001510101571674679383907928, −8.874765005709579033381631886180, −8.043221151327483623943854429201, −6.96590812517798797361763826880, −5.83051214560024905598016171348, −5.22092004566653856494916960005, −4.44734524408175940803082472618, −3.45878775380885906415778403098, −1.95339051485587450227408974080, 0, 1.95339051485587450227408974080, 3.45878775380885906415778403098, 4.44734524408175940803082472618, 5.22092004566653856494916960005, 5.83051214560024905598016171348, 6.96590812517798797361763826880, 8.043221151327483623943854429201, 8.874765005709579033381631886180, 10.89001510101571674679383907928

Graph of the $Z$-function along the critical line