Properties

Label 2-23e2-1.1-c3-0-84
Degree $2$
Conductor $529$
Sign $-1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.267·2-s + 4.19·3-s − 7.92·4-s − 4.12·5-s − 1.12·6-s + 9.26·7-s + 4.26·8-s − 9.39·9-s + 1.10·10-s + 2.87·11-s − 33.2·12-s + 51.3·13-s − 2.48·14-s − 17.3·15-s + 62.2·16-s − 97.0·17-s + 2.51·18-s + 89.8·19-s + 32.6·20-s + 38.8·21-s − 0.770·22-s + 17.9·24-s − 107.·25-s − 13.7·26-s − 152.·27-s − 73.4·28-s − 194.·29-s + ⋯
L(s)  = 1  − 0.0947·2-s + 0.807·3-s − 0.991·4-s − 0.368·5-s − 0.0765·6-s + 0.500·7-s + 0.188·8-s − 0.347·9-s + 0.0349·10-s + 0.0788·11-s − 0.800·12-s + 1.09·13-s − 0.0474·14-s − 0.297·15-s + 0.973·16-s − 1.38·17-s + 0.0329·18-s + 1.08·19-s + 0.365·20-s + 0.404·21-s − 0.00746·22-s + 0.152·24-s − 0.863·25-s − 0.103·26-s − 1.08·27-s − 0.495·28-s − 1.24·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 + 0.267T + 8T^{2} \)
3 \( 1 - 4.19T + 27T^{2} \)
5 \( 1 + 4.12T + 125T^{2} \)
7 \( 1 - 9.26T + 343T^{2} \)
11 \( 1 - 2.87T + 1.33e3T^{2} \)
13 \( 1 - 51.3T + 2.19e3T^{2} \)
17 \( 1 + 97.0T + 4.91e3T^{2} \)
19 \( 1 - 89.8T + 6.85e3T^{2} \)
29 \( 1 + 194.T + 2.43e4T^{2} \)
31 \( 1 + 23.6T + 2.97e4T^{2} \)
37 \( 1 - 334.T + 5.06e4T^{2} \)
41 \( 1 + 200.T + 6.89e4T^{2} \)
43 \( 1 + 132.T + 7.95e4T^{2} \)
47 \( 1 + 290.T + 1.03e5T^{2} \)
53 \( 1 + 681.T + 1.48e5T^{2} \)
59 \( 1 + 814.T + 2.05e5T^{2} \)
61 \( 1 + 242.T + 2.26e5T^{2} \)
67 \( 1 - 513.T + 3.00e5T^{2} \)
71 \( 1 - 660.T + 3.57e5T^{2} \)
73 \( 1 + 447.T + 3.89e5T^{2} \)
79 \( 1 - 864.T + 4.93e5T^{2} \)
83 \( 1 - 1.07e3T + 5.71e5T^{2} \)
89 \( 1 + 1.62e3T + 7.04e5T^{2} \)
97 \( 1 + 390.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.568771795061561506313682611142, −9.136609959410572516232461787681, −8.160640705044009513444323313412, −7.81372111262827861094583859727, −6.26136903590134623644038494051, −5.11735994326322244027496324253, −4.06266092931603788389343627597, −3.24028782975744983405208301317, −1.64545778910554448954474261357, 0, 1.64545778910554448954474261357, 3.24028782975744983405208301317, 4.06266092931603788389343627597, 5.11735994326322244027496324253, 6.26136903590134623644038494051, 7.81372111262827861094583859727, 8.160640705044009513444323313412, 9.136609959410572516232461787681, 9.568771795061561506313682611142

Graph of the $Z$-function along the critical line