Properties

Label 2-23e2-1.1-c3-0-82
Degree $2$
Conductor $529$
Sign $-1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.15·2-s + 9.55·3-s − 3.37·4-s − 17.5·5-s − 20.5·6-s + 3.15·7-s + 24.4·8-s + 64.2·9-s + 37.6·10-s − 12.8·11-s − 32.2·12-s + 2.45·13-s − 6.77·14-s − 167.·15-s − 25.5·16-s − 62.6·17-s − 138.·18-s + 39.6·19-s + 59.1·20-s + 30.1·21-s + 27.6·22-s + 233.·24-s + 181.·25-s − 5.27·26-s + 355.·27-s − 10.6·28-s − 187.·29-s + ⋯
L(s)  = 1  − 0.760·2-s + 1.83·3-s − 0.422·4-s − 1.56·5-s − 1.39·6-s + 0.170·7-s + 1.08·8-s + 2.37·9-s + 1.19·10-s − 0.353·11-s − 0.775·12-s + 0.0523·13-s − 0.129·14-s − 2.87·15-s − 0.399·16-s − 0.893·17-s − 1.80·18-s + 0.478·19-s + 0.660·20-s + 0.312·21-s + 0.268·22-s + 1.98·24-s + 1.45·25-s − 0.0398·26-s + 2.53·27-s − 0.0718·28-s − 1.20·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 + 2.15T + 8T^{2} \)
3 \( 1 - 9.55T + 27T^{2} \)
5 \( 1 + 17.5T + 125T^{2} \)
7 \( 1 - 3.15T + 343T^{2} \)
11 \( 1 + 12.8T + 1.33e3T^{2} \)
13 \( 1 - 2.45T + 2.19e3T^{2} \)
17 \( 1 + 62.6T + 4.91e3T^{2} \)
19 \( 1 - 39.6T + 6.85e3T^{2} \)
29 \( 1 + 187.T + 2.43e4T^{2} \)
31 \( 1 - 3.14T + 2.97e4T^{2} \)
37 \( 1 + 132.T + 5.06e4T^{2} \)
41 \( 1 - 54.1T + 6.89e4T^{2} \)
43 \( 1 + 235.T + 7.95e4T^{2} \)
47 \( 1 + 128.T + 1.03e5T^{2} \)
53 \( 1 + 189.T + 1.48e5T^{2} \)
59 \( 1 + 503.T + 2.05e5T^{2} \)
61 \( 1 - 48.0T + 2.26e5T^{2} \)
67 \( 1 - 490.T + 3.00e5T^{2} \)
71 \( 1 + 994.T + 3.57e5T^{2} \)
73 \( 1 + 235.T + 3.89e5T^{2} \)
79 \( 1 + 1.33e3T + 4.93e5T^{2} \)
83 \( 1 + 1.06e3T + 5.71e5T^{2} \)
89 \( 1 - 1.32e3T + 7.04e5T^{2} \)
97 \( 1 - 1.12e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.635968402708893865963994524367, −8.875114663131723560200193718589, −8.292754441692587498338701641513, −7.68746277743436316037647896364, −7.10703762661002619051195209821, −4.75086124143907554746082359576, −3.98295339999051901044090089311, −3.12496555524837484428391818739, −1.64275437745992140349219718009, 0, 1.64275437745992140349219718009, 3.12496555524837484428391818739, 3.98295339999051901044090089311, 4.75086124143907554746082359576, 7.10703762661002619051195209821, 7.68746277743436316037647896364, 8.292754441692587498338701641513, 8.875114663131723560200193718589, 9.635968402708893865963994524367

Graph of the $Z$-function along the critical line