Properties

Label 2-23e2-1.1-c3-0-69
Degree $2$
Conductor $529$
Sign $-1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.73·2-s − 6.19·3-s + 5.92·4-s + 20.1·5-s + 23.1·6-s + 12.7·7-s + 7.73·8-s + 11.3·9-s − 75.1·10-s + 27.1·11-s − 36.7·12-s − 73.3·13-s − 47.5·14-s − 124.·15-s − 76.2·16-s − 6.96·17-s − 42.5·18-s − 79.8·19-s + 119.·20-s − 78.8·21-s − 101.·22-s − 47.9·24-s + 279.·25-s + 273.·26-s + 96.7·27-s + 75.4·28-s + 48.2·29-s + ⋯
L(s)  = 1  − 1.31·2-s − 1.19·3-s + 0.741·4-s + 1.79·5-s + 1.57·6-s + 0.687·7-s + 0.341·8-s + 0.421·9-s − 2.37·10-s + 0.743·11-s − 0.883·12-s − 1.56·13-s − 0.907·14-s − 2.14·15-s − 1.19·16-s − 0.0993·17-s − 0.556·18-s − 0.964·19-s + 1.33·20-s − 0.819·21-s − 0.981·22-s − 0.407·24-s + 2.23·25-s + 2.06·26-s + 0.689·27-s + 0.509·28-s + 0.308·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 + 3.73T + 8T^{2} \)
3 \( 1 + 6.19T + 27T^{2} \)
5 \( 1 - 20.1T + 125T^{2} \)
7 \( 1 - 12.7T + 343T^{2} \)
11 \( 1 - 27.1T + 1.33e3T^{2} \)
13 \( 1 + 73.3T + 2.19e3T^{2} \)
17 \( 1 + 6.96T + 4.91e3T^{2} \)
19 \( 1 + 79.8T + 6.85e3T^{2} \)
29 \( 1 - 48.2T + 2.43e4T^{2} \)
31 \( 1 + 148.T + 2.97e4T^{2} \)
37 \( 1 + 330.T + 5.06e4T^{2} \)
41 \( 1 + 69.1T + 6.89e4T^{2} \)
43 \( 1 + 367.T + 7.95e4T^{2} \)
47 \( 1 - 32.0T + 1.03e5T^{2} \)
53 \( 1 - 485.T + 1.48e5T^{2} \)
59 \( 1 - 200.T + 2.05e5T^{2} \)
61 \( 1 - 142.T + 2.26e5T^{2} \)
67 \( 1 + 477.T + 3.00e5T^{2} \)
71 \( 1 + 950.T + 3.57e5T^{2} \)
73 \( 1 - 765.T + 3.89e5T^{2} \)
79 \( 1 + 652.T + 4.93e5T^{2} \)
83 \( 1 - 405.T + 5.71e5T^{2} \)
89 \( 1 - 317.T + 7.04e5T^{2} \)
97 \( 1 - 590.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16046883289293437403870827166, −9.225746851066610406321131377292, −8.538942135627431483533937736312, −7.12248885339779831800563285350, −6.48337562813275136329375205817, −5.38869106762302284024306731161, −4.73815827400505116680843656878, −2.22650075762756716185071121546, −1.41212313178524008269997392009, 0, 1.41212313178524008269997392009, 2.22650075762756716185071121546, 4.73815827400505116680843656878, 5.38869106762302284024306731161, 6.48337562813275136329375205817, 7.12248885339779831800563285350, 8.538942135627431483533937736312, 9.225746851066610406321131377292, 10.16046883289293437403870827166

Graph of the $Z$-function along the critical line