Properties

Label 2-23e2-1.1-c3-0-64
Degree $2$
Conductor $529$
Sign $-1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.65·2-s − 10.3·3-s − 0.959·4-s − 27.3·6-s − 23.7·8-s + 79.2·9-s + 9.89·12-s + 86.8·13-s − 55.3·16-s + 210.·18-s + 245.·24-s − 125·25-s + 230.·26-s − 538.·27-s − 24.7·29-s + 147.·31-s + 43.1·32-s − 76.0·36-s − 895.·39-s + 52.8·41-s − 580.·47-s + 570.·48-s − 343·49-s − 331.·50-s − 83.3·52-s − 1.42e3·54-s − 65.5·58-s + ⋯
L(s)  = 1  + 0.938·2-s − 1.98·3-s − 0.119·4-s − 1.86·6-s − 1.05·8-s + 2.93·9-s + 0.238·12-s + 1.85·13-s − 0.865·16-s + 2.75·18-s + 2.08·24-s − 25-s + 1.73·26-s − 3.83·27-s − 0.158·29-s + 0.852·31-s + 0.238·32-s − 0.352·36-s − 3.67·39-s + 0.201·41-s − 1.80·47-s + 1.71·48-s − 49-s − 0.938·50-s − 0.222·52-s − 3.59·54-s − 0.148·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 - 2.65T + 8T^{2} \)
3 \( 1 + 10.3T + 27T^{2} \)
5 \( 1 + 125T^{2} \)
7 \( 1 + 343T^{2} \)
11 \( 1 + 1.33e3T^{2} \)
13 \( 1 - 86.8T + 2.19e3T^{2} \)
17 \( 1 + 4.91e3T^{2} \)
19 \( 1 + 6.85e3T^{2} \)
29 \( 1 + 24.7T + 2.43e4T^{2} \)
31 \( 1 - 147.T + 2.97e4T^{2} \)
37 \( 1 + 5.06e4T^{2} \)
41 \( 1 - 52.8T + 6.89e4T^{2} \)
43 \( 1 + 7.95e4T^{2} \)
47 \( 1 + 580.T + 1.03e5T^{2} \)
53 \( 1 + 1.48e5T^{2} \)
59 \( 1 + 396T + 2.05e5T^{2} \)
61 \( 1 + 2.26e5T^{2} \)
67 \( 1 + 3.00e5T^{2} \)
71 \( 1 + 779.T + 3.57e5T^{2} \)
73 \( 1 - 812.T + 3.89e5T^{2} \)
79 \( 1 + 4.93e5T^{2} \)
83 \( 1 + 5.71e5T^{2} \)
89 \( 1 + 7.04e5T^{2} \)
97 \( 1 + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.30792866267953517781133355327, −9.375203730262149961250469711864, −8.036041524584499579463020397091, −6.55672216130415090302545912052, −6.13306054101133600683790892643, −5.33942801291885513262722420341, −4.45490125756870609383157900573, −3.62451362876479624388955763697, −1.33146011199116449577164528096, 0, 1.33146011199116449577164528096, 3.62451362876479624388955763697, 4.45490125756870609383157900573, 5.33942801291885513262722420341, 6.13306054101133600683790892643, 6.55672216130415090302545912052, 8.036041524584499579463020397091, 9.375203730262149961250469711864, 10.30792866267953517781133355327

Graph of the $Z$-function along the critical line