Properties

Label 2-23e2-1.1-c3-0-57
Degree $2$
Conductor $529$
Sign $-1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.976·2-s − 6.99·3-s − 7.04·4-s − 1.89·5-s − 6.82·6-s + 11.4·7-s − 14.6·8-s + 21.9·9-s − 1.85·10-s + 24.2·11-s + 49.3·12-s − 51.2·13-s + 11.1·14-s + 13.2·15-s + 42.0·16-s + 83.4·17-s + 21.4·18-s + 150.·19-s + 13.3·20-s − 80.0·21-s + 23.6·22-s + 102.·24-s − 121.·25-s − 50.0·26-s + 35.3·27-s − 80.6·28-s − 252.·29-s + ⋯
L(s)  = 1  + 0.345·2-s − 1.34·3-s − 0.880·4-s − 0.169·5-s − 0.464·6-s + 0.618·7-s − 0.649·8-s + 0.812·9-s − 0.0585·10-s + 0.664·11-s + 1.18·12-s − 1.09·13-s + 0.213·14-s + 0.228·15-s + 0.656·16-s + 1.19·17-s + 0.280·18-s + 1.82·19-s + 0.149·20-s − 0.832·21-s + 0.229·22-s + 0.873·24-s − 0.971·25-s − 0.377·26-s + 0.252·27-s − 0.544·28-s − 1.61·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 - 0.976T + 8T^{2} \)
3 \( 1 + 6.99T + 27T^{2} \)
5 \( 1 + 1.89T + 125T^{2} \)
7 \( 1 - 11.4T + 343T^{2} \)
11 \( 1 - 24.2T + 1.33e3T^{2} \)
13 \( 1 + 51.2T + 2.19e3T^{2} \)
17 \( 1 - 83.4T + 4.91e3T^{2} \)
19 \( 1 - 150.T + 6.85e3T^{2} \)
29 \( 1 + 252.T + 2.43e4T^{2} \)
31 \( 1 - 43.7T + 2.97e4T^{2} \)
37 \( 1 + 35.7T + 5.06e4T^{2} \)
41 \( 1 - 333.T + 6.89e4T^{2} \)
43 \( 1 + 293.T + 7.95e4T^{2} \)
47 \( 1 + 103.T + 1.03e5T^{2} \)
53 \( 1 + 211.T + 1.48e5T^{2} \)
59 \( 1 + 115.T + 2.05e5T^{2} \)
61 \( 1 + 184.T + 2.26e5T^{2} \)
67 \( 1 - 545.T + 3.00e5T^{2} \)
71 \( 1 + 582.T + 3.57e5T^{2} \)
73 \( 1 - 47.4T + 3.89e5T^{2} \)
79 \( 1 + 1.25e3T + 4.93e5T^{2} \)
83 \( 1 - 759.T + 5.71e5T^{2} \)
89 \( 1 + 785.T + 7.04e5T^{2} \)
97 \( 1 - 560.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.874691830265283888977449560724, −9.463506324839619560546948480916, −8.030145903207590434768955111111, −7.24613393579190246171177339283, −5.84199384237263069962852602488, −5.33369681618928758344021549372, −4.53756335356326022132201825002, −3.37351880804525772638874757286, −1.24477364492803695997542771755, 0, 1.24477364492803695997542771755, 3.37351880804525772638874757286, 4.53756335356326022132201825002, 5.33369681618928758344021549372, 5.84199384237263069962852602488, 7.24613393579190246171177339283, 8.030145903207590434768955111111, 9.463506324839619560546948480916, 9.874691830265283888977449560724

Graph of the $Z$-function along the critical line