Properties

Label 2-23e2-1.1-c3-0-55
Degree $2$
Conductor $529$
Sign $-1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.19·2-s + 1.55·3-s + 2.17·4-s − 19.2·5-s − 4.94·6-s + 19.8·7-s + 18.5·8-s − 24.5·9-s + 61.5·10-s − 17.2·11-s + 3.37·12-s + 37.7·13-s − 63.3·14-s − 29.9·15-s − 76.6·16-s + 22.1·17-s + 78.4·18-s − 6.74·19-s − 42.0·20-s + 30.7·21-s + 54.9·22-s + 28.7·24-s + 247.·25-s − 120.·26-s − 80.0·27-s + 43.2·28-s + 226.·29-s + ⋯
L(s)  = 1  − 1.12·2-s + 0.298·3-s + 0.272·4-s − 1.72·5-s − 0.336·6-s + 1.07·7-s + 0.820·8-s − 0.910·9-s + 1.94·10-s − 0.472·11-s + 0.0812·12-s + 0.805·13-s − 1.20·14-s − 0.515·15-s − 1.19·16-s + 0.316·17-s + 1.02·18-s − 0.0814·19-s − 0.470·20-s + 0.319·21-s + 0.532·22-s + 0.244·24-s + 1.97·25-s − 0.908·26-s − 0.570·27-s + 0.292·28-s + 1.45·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 + 3.19T + 8T^{2} \)
3 \( 1 - 1.55T + 27T^{2} \)
5 \( 1 + 19.2T + 125T^{2} \)
7 \( 1 - 19.8T + 343T^{2} \)
11 \( 1 + 17.2T + 1.33e3T^{2} \)
13 \( 1 - 37.7T + 2.19e3T^{2} \)
17 \( 1 - 22.1T + 4.91e3T^{2} \)
19 \( 1 + 6.74T + 6.85e3T^{2} \)
29 \( 1 - 226.T + 2.43e4T^{2} \)
31 \( 1 - 292.T + 2.97e4T^{2} \)
37 \( 1 - 113.T + 5.06e4T^{2} \)
41 \( 1 + 443.T + 6.89e4T^{2} \)
43 \( 1 + 277.T + 7.95e4T^{2} \)
47 \( 1 + 75.1T + 1.03e5T^{2} \)
53 \( 1 - 195.T + 1.48e5T^{2} \)
59 \( 1 + 354.T + 2.05e5T^{2} \)
61 \( 1 + 36.1T + 2.26e5T^{2} \)
67 \( 1 - 40.3T + 3.00e5T^{2} \)
71 \( 1 - 635.T + 3.57e5T^{2} \)
73 \( 1 - 354.T + 3.89e5T^{2} \)
79 \( 1 + 726.T + 4.93e5T^{2} \)
83 \( 1 + 1.19e3T + 5.71e5T^{2} \)
89 \( 1 + 1.62e3T + 7.04e5T^{2} \)
97 \( 1 + 621.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.988665723480719620978605737987, −8.527441625276860189947603964586, −8.346098013104595907489960771653, −7.899849872922649030608261062627, −6.76415751549436106615313296121, −5.05903462844826785749407528420, −4.19867765287552975628882551381, −2.94776648803762543601096327356, −1.19380709255711226744550255251, 0, 1.19380709255711226744550255251, 2.94776648803762543601096327356, 4.19867765287552975628882551381, 5.05903462844826785749407528420, 6.76415751549436106615313296121, 7.899849872922649030608261062627, 8.346098013104595907489960771653, 8.527441625276860189947603964586, 9.988665723480719620978605737987

Graph of the $Z$-function along the critical line