Properties

Label 2-23e2-1.1-c3-0-45
Degree $2$
Conductor $529$
Sign $-1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.85·2-s − 8.54·3-s + 6.84·4-s + 13.3·5-s + 32.9·6-s − 17.3·7-s + 4.43·8-s + 46.0·9-s − 51.3·10-s − 53.7·11-s − 58.5·12-s + 41.6·13-s + 66.7·14-s − 113.·15-s − 71.8·16-s − 35.6·17-s − 177.·18-s − 19.9·19-s + 91.3·20-s + 148.·21-s + 207.·22-s − 37.8·24-s + 52.8·25-s − 160.·26-s − 162.·27-s − 118.·28-s + 187.·29-s + ⋯
L(s)  = 1  − 1.36·2-s − 1.64·3-s + 0.856·4-s + 1.19·5-s + 2.24·6-s − 0.935·7-s + 0.195·8-s + 1.70·9-s − 1.62·10-s − 1.47·11-s − 1.40·12-s + 0.888·13-s + 1.27·14-s − 1.96·15-s − 1.12·16-s − 0.509·17-s − 2.32·18-s − 0.241·19-s + 1.02·20-s + 1.53·21-s + 2.00·22-s − 0.322·24-s + 0.423·25-s − 1.20·26-s − 1.15·27-s − 0.800·28-s + 1.19·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 + 3.85T + 8T^{2} \)
3 \( 1 + 8.54T + 27T^{2} \)
5 \( 1 - 13.3T + 125T^{2} \)
7 \( 1 + 17.3T + 343T^{2} \)
11 \( 1 + 53.7T + 1.33e3T^{2} \)
13 \( 1 - 41.6T + 2.19e3T^{2} \)
17 \( 1 + 35.6T + 4.91e3T^{2} \)
19 \( 1 + 19.9T + 6.85e3T^{2} \)
29 \( 1 - 187.T + 2.43e4T^{2} \)
31 \( 1 - 2.12T + 2.97e4T^{2} \)
37 \( 1 - 103.T + 5.06e4T^{2} \)
41 \( 1 - 476.T + 6.89e4T^{2} \)
43 \( 1 - 8.51T + 7.95e4T^{2} \)
47 \( 1 - 239.T + 1.03e5T^{2} \)
53 \( 1 - 75.5T + 1.48e5T^{2} \)
59 \( 1 + 208.T + 2.05e5T^{2} \)
61 \( 1 + 321.T + 2.26e5T^{2} \)
67 \( 1 - 694.T + 3.00e5T^{2} \)
71 \( 1 - 90.5T + 3.57e5T^{2} \)
73 \( 1 - 106.T + 3.89e5T^{2} \)
79 \( 1 + 570.T + 4.93e5T^{2} \)
83 \( 1 + 743.T + 5.71e5T^{2} \)
89 \( 1 + 560.T + 7.04e5T^{2} \)
97 \( 1 + 561.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06487102881762277663176848708, −9.450832672419242462960299757413, −8.353731560402274850818199476939, −7.15498444442108207511469899088, −6.26680392588239407075048853049, −5.72514937557919567444258114417, −4.57942993899956908249561326270, −2.46121548628141887783531630290, −1.04367061823522128873582908656, 0, 1.04367061823522128873582908656, 2.46121548628141887783531630290, 4.57942993899956908249561326270, 5.72514937557919567444258114417, 6.26680392588239407075048853049, 7.15498444442108207511469899088, 8.353731560402274850818199476939, 9.450832672419242462960299757413, 10.06487102881762277663176848708

Graph of the $Z$-function along the critical line