Properties

Label 2-23e2-1.1-c3-0-32
Degree $2$
Conductor $529$
Sign $-1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.48·2-s − 6.79·3-s − 5.80·4-s − 11.4·5-s + 10.0·6-s − 21.1·7-s + 20.4·8-s + 19.1·9-s + 17.0·10-s − 42.5·11-s + 39.4·12-s + 64.5·13-s + 31.3·14-s + 78.0·15-s + 16.0·16-s − 40.8·17-s − 28.3·18-s + 102.·19-s + 66.6·20-s + 143.·21-s + 63.0·22-s − 138.·24-s + 6.99·25-s − 95.7·26-s + 53.4·27-s + 122.·28-s − 89.8·29-s + ⋯
L(s)  = 1  − 0.524·2-s − 1.30·3-s − 0.725·4-s − 1.02·5-s + 0.685·6-s − 1.14·7-s + 0.904·8-s + 0.708·9-s + 0.538·10-s − 1.16·11-s + 0.947·12-s + 1.37·13-s + 0.598·14-s + 1.34·15-s + 0.251·16-s − 0.583·17-s − 0.371·18-s + 1.23·19-s + 0.745·20-s + 1.49·21-s + 0.611·22-s − 1.18·24-s + 0.0559·25-s − 0.721·26-s + 0.380·27-s + 0.827·28-s − 0.575·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 + 1.48T + 8T^{2} \)
3 \( 1 + 6.79T + 27T^{2} \)
5 \( 1 + 11.4T + 125T^{2} \)
7 \( 1 + 21.1T + 343T^{2} \)
11 \( 1 + 42.5T + 1.33e3T^{2} \)
13 \( 1 - 64.5T + 2.19e3T^{2} \)
17 \( 1 + 40.8T + 4.91e3T^{2} \)
19 \( 1 - 102.T + 6.85e3T^{2} \)
29 \( 1 + 89.8T + 2.43e4T^{2} \)
31 \( 1 - 232.T + 2.97e4T^{2} \)
37 \( 1 + 91.0T + 5.06e4T^{2} \)
41 \( 1 - 84.5T + 6.89e4T^{2} \)
43 \( 1 - 44.7T + 7.95e4T^{2} \)
47 \( 1 - 326.T + 1.03e5T^{2} \)
53 \( 1 - 11.1T + 1.48e5T^{2} \)
59 \( 1 + 768.T + 2.05e5T^{2} \)
61 \( 1 - 772.T + 2.26e5T^{2} \)
67 \( 1 + 1.07e3T + 3.00e5T^{2} \)
71 \( 1 - 226.T + 3.57e5T^{2} \)
73 \( 1 - 698.T + 3.89e5T^{2} \)
79 \( 1 + 355.T + 4.93e5T^{2} \)
83 \( 1 - 281.T + 5.71e5T^{2} \)
89 \( 1 + 256.T + 7.04e5T^{2} \)
97 \( 1 - 1.05e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16615591480876942307490006331, −9.159683635025173740834684322508, −8.199185396571785238067449424456, −7.35381144314991121101675246902, −6.23300965434008873804308440869, −5.36688534656834850615249302668, −4.31609804541031134256280525583, −3.26537719855639006275675021616, −0.824610559964219805676865204165, 0, 0.824610559964219805676865204165, 3.26537719855639006275675021616, 4.31609804541031134256280525583, 5.36688534656834850615249302668, 6.23300965434008873804308440869, 7.35381144314991121101675246902, 8.199185396571785238067449424456, 9.159683635025173740834684322508, 10.16615591480876942307490006331

Graph of the $Z$-function along the critical line