Properties

Label 2-23e2-1.1-c3-0-113
Degree $2$
Conductor $529$
Sign $-1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.86·2-s + 3.43·3-s + 0.228·4-s + 17.9·5-s + 9.85·6-s − 32.7·7-s − 22.2·8-s − 15.1·9-s + 51.5·10-s − 26.7·11-s + 0.783·12-s − 14.4·13-s − 93.8·14-s + 61.7·15-s − 65.7·16-s − 24.7·17-s − 43.5·18-s − 94.6·19-s + 4.09·20-s − 112.·21-s − 76.6·22-s − 76.6·24-s + 197.·25-s − 41.5·26-s − 145.·27-s − 7.46·28-s − 57.5·29-s + ⋯
L(s)  = 1  + 1.01·2-s + 0.661·3-s + 0.0285·4-s + 1.60·5-s + 0.670·6-s − 1.76·7-s − 0.985·8-s − 0.562·9-s + 1.63·10-s − 0.731·11-s + 0.0188·12-s − 0.309·13-s − 1.79·14-s + 1.06·15-s − 1.02·16-s − 0.352·17-s − 0.570·18-s − 1.14·19-s + 0.0458·20-s − 1.16·21-s − 0.742·22-s − 0.651·24-s + 1.58·25-s − 0.313·26-s − 1.03·27-s − 0.0503·28-s − 0.368·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 - 2.86T + 8T^{2} \)
3 \( 1 - 3.43T + 27T^{2} \)
5 \( 1 - 17.9T + 125T^{2} \)
7 \( 1 + 32.7T + 343T^{2} \)
11 \( 1 + 26.7T + 1.33e3T^{2} \)
13 \( 1 + 14.4T + 2.19e3T^{2} \)
17 \( 1 + 24.7T + 4.91e3T^{2} \)
19 \( 1 + 94.6T + 6.85e3T^{2} \)
29 \( 1 + 57.5T + 2.43e4T^{2} \)
31 \( 1 - 88.8T + 2.97e4T^{2} \)
37 \( 1 - 305.T + 5.06e4T^{2} \)
41 \( 1 + 179.T + 6.89e4T^{2} \)
43 \( 1 - 96.5T + 7.95e4T^{2} \)
47 \( 1 - 218.T + 1.03e5T^{2} \)
53 \( 1 - 519.T + 1.48e5T^{2} \)
59 \( 1 + 37.2T + 2.05e5T^{2} \)
61 \( 1 + 96.3T + 2.26e5T^{2} \)
67 \( 1 + 497.T + 3.00e5T^{2} \)
71 \( 1 + 19.6T + 3.57e5T^{2} \)
73 \( 1 + 208.T + 3.89e5T^{2} \)
79 \( 1 - 446.T + 4.93e5T^{2} \)
83 \( 1 + 501.T + 5.71e5T^{2} \)
89 \( 1 + 1.10e3T + 7.04e5T^{2} \)
97 \( 1 + 1.81e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.762581998660116932248667037543, −9.310737933442245987263839830678, −8.481916709005850729689331685926, −6.81626622599835596318067534148, −6.01937909236397689597919845042, −5.51132941293934779368041939068, −4.11795871920583298214171497312, −2.84490151438764186003636472226, −2.47782139645876126633744366480, 0, 2.47782139645876126633744366480, 2.84490151438764186003636472226, 4.11795871920583298214171497312, 5.51132941293934779368041939068, 6.01937909236397689597919845042, 6.81626622599835596318067534148, 8.481916709005850729689331685926, 9.310737933442245987263839830678, 9.762581998660116932248667037543

Graph of the $Z$-function along the critical line