Properties

Label 2-23e2-1.1-c3-0-111
Degree $2$
Conductor $529$
Sign $-1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.96·2-s + 0.827·3-s + 16.6·4-s − 20.5·5-s + 4.11·6-s + 11.3·7-s + 43.1·8-s − 26.3·9-s − 102.·10-s − 30.8·11-s + 13.8·12-s − 12.3·13-s + 56.3·14-s − 17.0·15-s + 81.0·16-s − 33.6·17-s − 130.·18-s − 102.·19-s − 343.·20-s + 9.37·21-s − 153.·22-s + 35.7·24-s + 298.·25-s − 61.5·26-s − 44.1·27-s + 189.·28-s + 68.9·29-s + ⋯
L(s)  = 1  + 1.75·2-s + 0.159·3-s + 2.08·4-s − 1.84·5-s + 0.279·6-s + 0.611·7-s + 1.90·8-s − 0.974·9-s − 3.23·10-s − 0.845·11-s + 0.332·12-s − 0.264·13-s + 1.07·14-s − 0.293·15-s + 1.26·16-s − 0.480·17-s − 1.71·18-s − 1.23·19-s − 3.84·20-s + 0.0974·21-s − 1.48·22-s + 0.303·24-s + 2.39·25-s − 0.464·26-s − 0.314·27-s + 1.27·28-s + 0.441·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 - 4.96T + 8T^{2} \)
3 \( 1 - 0.827T + 27T^{2} \)
5 \( 1 + 20.5T + 125T^{2} \)
7 \( 1 - 11.3T + 343T^{2} \)
11 \( 1 + 30.8T + 1.33e3T^{2} \)
13 \( 1 + 12.3T + 2.19e3T^{2} \)
17 \( 1 + 33.6T + 4.91e3T^{2} \)
19 \( 1 + 102.T + 6.85e3T^{2} \)
29 \( 1 - 68.9T + 2.43e4T^{2} \)
31 \( 1 + 184.T + 2.97e4T^{2} \)
37 \( 1 - 301.T + 5.06e4T^{2} \)
41 \( 1 + 66.7T + 6.89e4T^{2} \)
43 \( 1 - 101.T + 7.95e4T^{2} \)
47 \( 1 - 72.5T + 1.03e5T^{2} \)
53 \( 1 + 301.T + 1.48e5T^{2} \)
59 \( 1 - 66.6T + 2.05e5T^{2} \)
61 \( 1 - 498.T + 2.26e5T^{2} \)
67 \( 1 + 439.T + 3.00e5T^{2} \)
71 \( 1 + 499.T + 3.57e5T^{2} \)
73 \( 1 + 583.T + 3.89e5T^{2} \)
79 \( 1 - 30.0T + 4.93e5T^{2} \)
83 \( 1 - 268.T + 5.71e5T^{2} \)
89 \( 1 + 364.T + 7.04e5T^{2} \)
97 \( 1 + 463.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.71411041251918786858002556447, −8.708695728173674029749131201747, −7.950865138968795483257656145423, −7.19913131466413898111130095122, −6.04542057921851398841443210927, −4.90647579189758657702030698921, −4.31349646235203894761785750832, −3.33653197588260019681324849243, −2.40264190465050538491655862453, 0, 2.40264190465050538491655862453, 3.33653197588260019681324849243, 4.31349646235203894761785750832, 4.90647579189758657702030698921, 6.04542057921851398841443210927, 7.19913131466413898111130095122, 7.950865138968795483257656145423, 8.708695728173674029749131201747, 10.71411041251918786858002556447

Graph of the $Z$-function along the critical line