Properties

Label 2-23e2-1.1-c3-0-109
Degree $2$
Conductor $529$
Sign $-1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.14·2-s + 2.50·3-s + 9.14·4-s − 5.59·5-s + 10.3·6-s − 20.1·7-s + 4.75·8-s − 20.7·9-s − 23.1·10-s + 1.76·11-s + 22.8·12-s + 64.1·13-s − 83.5·14-s − 14.0·15-s − 53.5·16-s − 93.3·17-s − 85.8·18-s − 52.8·19-s − 51.2·20-s − 50.5·21-s + 7.30·22-s + 11.8·24-s − 93.6·25-s + 265.·26-s − 119.·27-s − 184.·28-s + 229.·29-s + ⋯
L(s)  = 1  + 1.46·2-s + 0.481·3-s + 1.14·4-s − 0.500·5-s + 0.705·6-s − 1.08·7-s + 0.209·8-s − 0.768·9-s − 0.733·10-s + 0.0483·11-s + 0.550·12-s + 1.36·13-s − 1.59·14-s − 0.241·15-s − 0.836·16-s − 1.33·17-s − 1.12·18-s − 0.638·19-s − 0.572·20-s − 0.524·21-s + 0.0707·22-s + 0.101·24-s − 0.749·25-s + 2.00·26-s − 0.851·27-s − 1.24·28-s + 1.46·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 - 4.14T + 8T^{2} \)
3 \( 1 - 2.50T + 27T^{2} \)
5 \( 1 + 5.59T + 125T^{2} \)
7 \( 1 + 20.1T + 343T^{2} \)
11 \( 1 - 1.76T + 1.33e3T^{2} \)
13 \( 1 - 64.1T + 2.19e3T^{2} \)
17 \( 1 + 93.3T + 4.91e3T^{2} \)
19 \( 1 + 52.8T + 6.85e3T^{2} \)
29 \( 1 - 229.T + 2.43e4T^{2} \)
31 \( 1 - 34.0T + 2.97e4T^{2} \)
37 \( 1 + 215.T + 5.06e4T^{2} \)
41 \( 1 + 414.T + 6.89e4T^{2} \)
43 \( 1 + 274.T + 7.95e4T^{2} \)
47 \( 1 + 100.T + 1.03e5T^{2} \)
53 \( 1 - 466.T + 1.48e5T^{2} \)
59 \( 1 - 219.T + 2.05e5T^{2} \)
61 \( 1 - 519.T + 2.26e5T^{2} \)
67 \( 1 - 934.T + 3.00e5T^{2} \)
71 \( 1 - 199.T + 3.57e5T^{2} \)
73 \( 1 - 284.T + 3.89e5T^{2} \)
79 \( 1 + 221.T + 4.93e5T^{2} \)
83 \( 1 + 596.T + 5.71e5T^{2} \)
89 \( 1 - 432.T + 7.04e5T^{2} \)
97 \( 1 - 995.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14727643644706554521989946717, −8.825286995776919911819391296909, −8.398867011466555331530656771885, −6.68804951503684405685543111688, −6.35211377835194007298841317177, −5.17412348410069577417067373493, −3.92109673939522804061270559942, −3.42313187371796051218237312576, −2.34802211620169270016886550427, 0, 2.34802211620169270016886550427, 3.42313187371796051218237312576, 3.92109673939522804061270559942, 5.17412348410069577417067373493, 6.35211377835194007298841317177, 6.68804951503684405685543111688, 8.398867011466555331530656771885, 8.825286995776919911819391296909, 10.14727643644706554521989946717

Graph of the $Z$-function along the critical line