Properties

Label 2-2394-1.1-c1-0-34
Degree $2$
Conductor $2394$
Sign $-1$
Analytic cond. $19.1161$
Root an. cond. $4.37220$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 7-s − 8-s + 2·13-s − 14-s + 16-s − 6·17-s + 19-s − 6·23-s − 5·25-s − 2·26-s + 28-s + 6·29-s − 10·31-s − 32-s + 6·34-s + 8·37-s − 38-s − 6·41-s − 4·43-s + 6·46-s + 49-s + 5·50-s + 2·52-s − 6·53-s − 56-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s + 0.554·13-s − 0.267·14-s + 1/4·16-s − 1.45·17-s + 0.229·19-s − 1.25·23-s − 25-s − 0.392·26-s + 0.188·28-s + 1.11·29-s − 1.79·31-s − 0.176·32-s + 1.02·34-s + 1.31·37-s − 0.162·38-s − 0.937·41-s − 0.609·43-s + 0.884·46-s + 1/7·49-s + 0.707·50-s + 0.277·52-s − 0.824·53-s − 0.133·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2394 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2394 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2394\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(19.1161\)
Root analytic conductor: \(4.37220\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2394} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2394,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 - T \)
good5 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 14 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.489842326698717837398920644057, −8.034923960614401653103382775527, −7.12067428738848652227633051995, −6.36808655516974190816452684696, −5.61517922411602047981813256221, −4.50864903583377422386297334125, −3.66111055125572467928556646511, −2.40183884965549070769066097540, −1.55216464217009888725261702980, 0, 1.55216464217009888725261702980, 2.40183884965549070769066097540, 3.66111055125572467928556646511, 4.50864903583377422386297334125, 5.61517922411602047981813256221, 6.36808655516974190816452684696, 7.12067428738848652227633051995, 8.034923960614401653103382775527, 8.489842326698717837398920644057

Graph of the $Z$-function along the critical line