Properties

Label 2-236992-1.1-c1-0-53
Degree $2$
Conductor $236992$
Sign $-1$
Analytic cond. $1892.39$
Root an. cond. $43.5016$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 4·5-s + 7-s + 6·9-s + 2·11-s − 5·13-s − 12·15-s − 4·19-s + 3·21-s + 11·25-s + 9·27-s + 3·29-s + 5·31-s + 6·33-s − 4·35-s + 4·37-s − 15·39-s + 5·41-s − 4·43-s − 24·45-s − 11·47-s + 49-s − 8·55-s − 12·57-s + 12·59-s − 6·61-s + 6·63-s + ⋯
L(s)  = 1  + 1.73·3-s − 1.78·5-s + 0.377·7-s + 2·9-s + 0.603·11-s − 1.38·13-s − 3.09·15-s − 0.917·19-s + 0.654·21-s + 11/5·25-s + 1.73·27-s + 0.557·29-s + 0.898·31-s + 1.04·33-s − 0.676·35-s + 0.657·37-s − 2.40·39-s + 0.780·41-s − 0.609·43-s − 3.57·45-s − 1.60·47-s + 1/7·49-s − 1.07·55-s − 1.58·57-s + 1.56·59-s − 0.768·61-s + 0.755·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 236992 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 236992 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(236992\)    =    \(2^{6} \cdot 7 \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(1892.39\)
Root analytic conductor: \(43.5016\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 236992,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
23 \( 1 \)
good3 \( 1 - p T + p T^{2} \)
5 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 11 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 16 T + p T^{2} \)
71 \( 1 - 7 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.11492829159469, −12.69385328910717, −12.17570388588064, −11.87681615459629, −11.37510689612406, −10.85261661130252, −10.16481973732528, −9.864575651534905, −9.211660955505425, −8.809181444040083, −8.315189810766669, −8.036469235518442, −7.650540221839253, −7.181550190648470, −6.766417943766744, −6.195291070242763, −5.076863652832844, −4.597636443533759, −4.319946239388332, −3.824710169847111, −3.271639432861018, −2.781261358038574, −2.324949789683820, −1.595887410202452, −0.8383405386554193, 0, 0.8383405386554193, 1.595887410202452, 2.324949789683820, 2.781261358038574, 3.271639432861018, 3.824710169847111, 4.319946239388332, 4.597636443533759, 5.076863652832844, 6.195291070242763, 6.766417943766744, 7.181550190648470, 7.650540221839253, 8.036469235518442, 8.315189810766669, 8.809181444040083, 9.211660955505425, 9.864575651534905, 10.16481973732528, 10.85261661130252, 11.37510689612406, 11.87681615459629, 12.17570388588064, 12.69385328910717, 13.11492829159469

Graph of the $Z$-function along the critical line