Properties

Label 2-236992-1.1-c1-0-35
Degree $2$
Conductor $236992$
Sign $-1$
Analytic cond. $1892.39$
Root an. cond. $43.5016$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 3·9-s − 4·11-s + 2·13-s + 4·17-s + 4·19-s − 5·25-s − 2·29-s − 4·31-s − 4·37-s − 6·41-s − 4·43-s − 4·47-s + 49-s − 12·53-s + 8·59-s + 3·63-s + 4·67-s − 8·71-s − 10·73-s + 4·77-s + 8·79-s + 9·81-s − 12·83-s − 4·89-s − 2·91-s + 12·97-s + ⋯
L(s)  = 1  − 0.377·7-s − 9-s − 1.20·11-s + 0.554·13-s + 0.970·17-s + 0.917·19-s − 25-s − 0.371·29-s − 0.718·31-s − 0.657·37-s − 0.937·41-s − 0.609·43-s − 0.583·47-s + 1/7·49-s − 1.64·53-s + 1.04·59-s + 0.377·63-s + 0.488·67-s − 0.949·71-s − 1.17·73-s + 0.455·77-s + 0.900·79-s + 81-s − 1.31·83-s − 0.423·89-s − 0.209·91-s + 1.21·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 236992 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 236992 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(236992\)    =    \(2^{6} \cdot 7 \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(1892.39\)
Root analytic conductor: \(43.5016\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{236992} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 236992,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
23 \( 1 \)
good3 \( 1 + p T^{2} \)
5 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.07689584423954, −12.80467343594394, −12.15546424261680, −11.58507588483714, −11.48442181204825, −10.78747949924477, −10.31601529298429, −9.919673746365780, −9.458807113484896, −8.917797799876258, −8.311701039465463, −8.058569327526009, −7.500913689906729, −7.074580677651070, −6.355788304870294, −5.859292683899140, −5.404939049279159, −5.199775514453000, −4.413717062062035, −3.618414388614760, −3.184372973504624, −2.984696605607406, −2.039002726034421, −1.599082501827680, −0.6136595402417058, 0, 0.6136595402417058, 1.599082501827680, 2.039002726034421, 2.984696605607406, 3.184372973504624, 3.618414388614760, 4.413717062062035, 5.199775514453000, 5.404939049279159, 5.859292683899140, 6.355788304870294, 7.074580677651070, 7.500913689906729, 8.058569327526009, 8.311701039465463, 8.917797799876258, 9.458807113484896, 9.919673746365780, 10.31601529298429, 10.78747949924477, 11.48442181204825, 11.58507588483714, 12.15546424261680, 12.80467343594394, 13.07689584423954

Graph of the $Z$-function along the critical line