L(s) = 1 | − i·2-s + 3.34·3-s − 4-s − 1.56i·5-s − 3.34i·6-s + i·7-s + i·8-s + 8.18·9-s − 1.56·10-s − 2.86i·11-s − 3.34·12-s + 14-s − 5.22i·15-s + 16-s + 2.22·17-s − 8.18i·18-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.93·3-s − 0.5·4-s − 0.699i·5-s − 1.36i·6-s + 0.377i·7-s + 0.353i·8-s + 2.72·9-s − 0.494·10-s − 0.864i·11-s − 0.965·12-s + 0.267·14-s − 1.35i·15-s + 0.250·16-s + 0.540·17-s − 1.92i·18-s + ⋯ |
Λ(s)=(=(2366s/2ΓC(s)L(s)(0.277+0.960i)Λ(2−s)
Λ(s)=(=(2366s/2ΓC(s+1/2)L(s)(0.277+0.960i)Λ(1−s)
Degree: |
2 |
Conductor: |
2366
= 2⋅7⋅132
|
Sign: |
0.277+0.960i
|
Analytic conductor: |
18.8926 |
Root analytic conductor: |
4.34656 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2366(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2366, ( :1/2), 0.277+0.960i)
|
Particular Values
L(1) |
≈ |
3.732739869 |
L(21) |
≈ |
3.732739869 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 7 | 1−iT |
| 13 | 1 |
good | 3 | 1−3.34T+3T2 |
| 5 | 1+1.56iT−5T2 |
| 11 | 1+2.86iT−11T2 |
| 17 | 1−2.22T+17T2 |
| 19 | 1−7.23iT−19T2 |
| 23 | 1−1.66T+23T2 |
| 29 | 1−4.82T+29T2 |
| 31 | 1−0.597iT−31T2 |
| 37 | 1−0.0385iT−37T2 |
| 41 | 1+7.95iT−41T2 |
| 43 | 1+10.0T+43T2 |
| 47 | 1+7.02iT−47T2 |
| 53 | 1+5.98T+53T2 |
| 59 | 1+0.896iT−59T2 |
| 61 | 1+14.2T+61T2 |
| 67 | 1+1.64iT−67T2 |
| 71 | 1−2.29iT−71T2 |
| 73 | 1+11.2iT−73T2 |
| 79 | 1−4.26T+79T2 |
| 83 | 1−4.94iT−83T2 |
| 89 | 1−2.42iT−89T2 |
| 97 | 1−4.88iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.832500830060239259887084064618, −8.242482502169434364775952711522, −7.84671184623907950613199083689, −6.64460699015099268542264481461, −5.42318389656732978438018787941, −4.50587182708865069899432896339, −3.52680157627976291316565948654, −3.12922542856450717901637804147, −2.01000148615358992653645545767, −1.19613903470974563896250555108,
1.42283247614129531685830818695, 2.75767835067011089940151154748, 3.16666907709086992282922284898, 4.35968406373433591034895900829, 4.84571870813974388787381224248, 6.56575324605820833005178966439, 6.97208893212934821742637716390, 7.63613975529296236284647071677, 8.246752765615955366028492571493, 9.045173383973337820254348448691