L(s) = 1 | − i·2-s + 3.34·3-s − 4-s − 1.56i·5-s − 3.34i·6-s + i·7-s + i·8-s + 8.18·9-s − 1.56·10-s − 2.86i·11-s − 3.34·12-s + 14-s − 5.22i·15-s + 16-s + 2.22·17-s − 8.18i·18-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.93·3-s − 0.5·4-s − 0.699i·5-s − 1.36i·6-s + 0.377i·7-s + 0.353i·8-s + 2.72·9-s − 0.494·10-s − 0.864i·11-s − 0.965·12-s + 0.267·14-s − 1.35i·15-s + 0.250·16-s + 0.540·17-s − 1.92i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.277 + 0.960i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.277 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.732739869\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.732739869\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 7 | \( 1 - iT \) |
| 13 | \( 1 \) |
good | 3 | \( 1 - 3.34T + 3T^{2} \) |
| 5 | \( 1 + 1.56iT - 5T^{2} \) |
| 11 | \( 1 + 2.86iT - 11T^{2} \) |
| 17 | \( 1 - 2.22T + 17T^{2} \) |
| 19 | \( 1 - 7.23iT - 19T^{2} \) |
| 23 | \( 1 - 1.66T + 23T^{2} \) |
| 29 | \( 1 - 4.82T + 29T^{2} \) |
| 31 | \( 1 - 0.597iT - 31T^{2} \) |
| 37 | \( 1 - 0.0385iT - 37T^{2} \) |
| 41 | \( 1 + 7.95iT - 41T^{2} \) |
| 43 | \( 1 + 10.0T + 43T^{2} \) |
| 47 | \( 1 + 7.02iT - 47T^{2} \) |
| 53 | \( 1 + 5.98T + 53T^{2} \) |
| 59 | \( 1 + 0.896iT - 59T^{2} \) |
| 61 | \( 1 + 14.2T + 61T^{2} \) |
| 67 | \( 1 + 1.64iT - 67T^{2} \) |
| 71 | \( 1 - 2.29iT - 71T^{2} \) |
| 73 | \( 1 + 11.2iT - 73T^{2} \) |
| 79 | \( 1 - 4.26T + 79T^{2} \) |
| 83 | \( 1 - 4.94iT - 83T^{2} \) |
| 89 | \( 1 - 2.42iT - 89T^{2} \) |
| 97 | \( 1 - 4.88iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.832500830060239259887084064618, −8.242482502169434364775952711522, −7.84671184623907950613199083689, −6.64460699015099268542264481461, −5.42318389656732978438018787941, −4.50587182708865069899432896339, −3.52680157627976291316565948654, −3.12922542856450717901637804147, −2.01000148615358992653645545767, −1.19613903470974563896250555108,
1.42283247614129531685830818695, 2.75767835067011089940151154748, 3.16666907709086992282922284898, 4.35968406373433591034895900829, 4.84571870813974388787381224248, 6.56575324605820833005178966439, 6.97208893212934821742637716390, 7.63613975529296236284647071677, 8.246752765615955366028492571493, 9.045173383973337820254348448691