Properties

Label 2-235200-1.1-c1-0-125
Degree $2$
Conductor $235200$
Sign $1$
Analytic cond. $1878.08$
Root an. cond. $43.3368$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 4·11-s + 4·13-s + 4·19-s + 27-s − 2·29-s − 8·31-s − 4·33-s − 6·37-s + 4·39-s − 4·43-s − 8·47-s − 10·53-s + 4·57-s + 4·59-s + 4·61-s − 4·67-s − 8·71-s + 16·73-s + 8·79-s + 81-s + 12·83-s − 2·87-s + 8·89-s − 8·93-s − 8·97-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 1.20·11-s + 1.10·13-s + 0.917·19-s + 0.192·27-s − 0.371·29-s − 1.43·31-s − 0.696·33-s − 0.986·37-s + 0.640·39-s − 0.609·43-s − 1.16·47-s − 1.37·53-s + 0.529·57-s + 0.520·59-s + 0.512·61-s − 0.488·67-s − 0.949·71-s + 1.87·73-s + 0.900·79-s + 1/9·81-s + 1.31·83-s − 0.214·87-s + 0.847·89-s − 0.829·93-s − 0.812·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(235200\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1878.08\)
Root analytic conductor: \(43.3368\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 235200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.199719623\)
\(L(\frac12)\) \(\approx\) \(2.199719623\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.07071018594121, −12.57336786914599, −12.01237372631169, −11.47435516560084, −10.90887628031934, −10.70309165275537, −10.10863338783498, −9.541930227758330, −9.233890022461802, −8.641314010017914, −8.111406315775246, −7.889343523944694, −7.277058109798474, −6.821371614488950, −6.225216917694168, −5.634121978695931, −5.146272167221068, −4.802507356841845, −3.933017303642098, −3.375625706047872, −3.253152929113572, −2.370434208029738, −1.845204830783477, −1.278549555881314, −0.3876917263098326, 0.3876917263098326, 1.278549555881314, 1.845204830783477, 2.370434208029738, 3.253152929113572, 3.375625706047872, 3.933017303642098, 4.802507356841845, 5.146272167221068, 5.634121978695931, 6.225216917694168, 6.821371614488950, 7.277058109798474, 7.889343523944694, 8.111406315775246, 8.641314010017914, 9.233890022461802, 9.541930227758330, 10.10863338783498, 10.70309165275537, 10.90887628031934, 11.47435516560084, 12.01237372631169, 12.57336786914599, 13.07071018594121

Graph of the $Z$-function along the critical line