Properties

Label 2-23520-1.1-c1-0-29
Degree $2$
Conductor $23520$
Sign $-1$
Analytic cond. $187.808$
Root an. cond. $13.7043$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s − 4·11-s − 2·13-s − 15-s + 2·17-s − 4·23-s + 25-s − 27-s + 2·29-s − 8·31-s + 4·33-s + 10·37-s + 2·39-s − 2·41-s + 4·43-s + 45-s − 4·47-s − 2·51-s + 10·53-s − 4·55-s − 4·59-s + 2·61-s − 2·65-s + 4·67-s + 4·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s − 1.20·11-s − 0.554·13-s − 0.258·15-s + 0.485·17-s − 0.834·23-s + 1/5·25-s − 0.192·27-s + 0.371·29-s − 1.43·31-s + 0.696·33-s + 1.64·37-s + 0.320·39-s − 0.312·41-s + 0.609·43-s + 0.149·45-s − 0.583·47-s − 0.280·51-s + 1.37·53-s − 0.539·55-s − 0.520·59-s + 0.256·61-s − 0.248·65-s + 0.488·67-s + 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23520\)    =    \(2^{5} \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(187.808\)
Root analytic conductor: \(13.7043\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{23520} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 23520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
good11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.88976051029609, −15.08125548964841, −14.75778626210540, −14.07842744899901, −13.43678812063013, −13.05860162131316, −12.36085705776891, −12.12772001193315, −11.18589564159920, −10.89764111741930, −10.17702296478314, −9.819287670533553, −9.269401825328224, −8.418818632850347, −7.800701337761215, −7.389812797324052, −6.635088396197596, −5.949650372864857, −5.467118849243745, −4.974385229624458, −4.242780867475218, −3.442365924600698, −2.543422126517037, −2.036857419370655, −0.9511969090386866, 0, 0.9511969090386866, 2.036857419370655, 2.543422126517037, 3.442365924600698, 4.242780867475218, 4.974385229624458, 5.467118849243745, 5.949650372864857, 6.635088396197596, 7.389812797324052, 7.800701337761215, 8.418818632850347, 9.269401825328224, 9.819287670533553, 10.17702296478314, 10.89764111741930, 11.18589564159920, 12.12772001193315, 12.36085705776891, 13.05860162131316, 13.43678812063013, 14.07842744899901, 14.75778626210540, 15.08125548964841, 15.88976051029609

Graph of the $Z$-function along the critical line