L(s) = 1 | + (−1.70 + 0.323i)3-s − 1.55i·5-s + (2.79 − 1.09i)9-s + 2.53·13-s + (0.502 + 2.64i)15-s − 4.33i·17-s − 6.83i·19-s − 3.80·23-s + 2.58·25-s + (−4.39 + 2.77i)27-s + 8.33i·29-s + 4.89i·31-s + 1.58·37-s + (−4.31 + 0.818i)39-s − 7.44i·41-s + ⋯ |
L(s) = 1 | + (−0.982 + 0.186i)3-s − 0.695i·5-s + (0.930 − 0.366i)9-s + 0.702·13-s + (0.129 + 0.683i)15-s − 1.05i·17-s − 1.56i·19-s − 0.794·23-s + 0.516·25-s + (−0.845 + 0.533i)27-s + 1.54i·29-s + 0.879i·31-s + 0.260·37-s + (−0.690 + 0.131i)39-s − 1.16i·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.329 + 0.944i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.329 + 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9634290630\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9634290630\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.70 - 0.323i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 1.55iT - 5T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 - 2.53T + 13T^{2} \) |
| 17 | \( 1 + 4.33iT - 17T^{2} \) |
| 19 | \( 1 + 6.83iT - 19T^{2} \) |
| 23 | \( 1 + 3.80T + 23T^{2} \) |
| 29 | \( 1 - 8.33iT - 29T^{2} \) |
| 31 | \( 1 - 4.89iT - 31T^{2} \) |
| 37 | \( 1 - 1.58T + 37T^{2} \) |
| 41 | \( 1 + 7.44iT - 41T^{2} \) |
| 43 | \( 1 - 6.20iT - 43T^{2} \) |
| 47 | \( 1 - 5.38T + 47T^{2} \) |
| 53 | \( 1 + 10.5iT - 53T^{2} \) |
| 59 | \( 1 + 10.2T + 59T^{2} \) |
| 61 | \( 1 + 8.19T + 61T^{2} \) |
| 67 | \( 1 + 3.46iT - 67T^{2} \) |
| 71 | \( 1 - 14.4T + 71T^{2} \) |
| 73 | \( 1 - 11.5T + 73T^{2} \) |
| 79 | \( 1 + 6.92iT - 79T^{2} \) |
| 83 | \( 1 + 4.82T + 83T^{2} \) |
| 89 | \( 1 + 4.33iT - 89T^{2} \) |
| 97 | \( 1 + 9.89T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.072251949445506239629457776359, −7.972406034965537610737194577345, −6.96208068105549462677667867953, −6.50893485260412920927300887955, −5.32281639548588826334126583538, −5.00153078949759572348679606313, −4.11109752176415412283248723403, −2.98300108660803064722114112371, −1.47157019654962619058528487150, −0.42421961734103385154340242545,
1.24321048596786767867957207934, 2.33131988958023012541209995967, 3.74585175542072722046361198366, 4.28540018542469691784965079655, 5.61724194809316227325828466073, 6.11055360472435817905321049112, 6.63115373271758509059343407035, 7.80623857857204463403412399730, 8.083307220679887463414182256597, 9.422995215452806275120011598179