Properties

Label 2-2352-1.1-c3-0-21
Degree $2$
Conductor $2352$
Sign $1$
Analytic cond. $138.772$
Root an. cond. $11.7801$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 4·5-s + 9·9-s + 20·11-s + 4·13-s + 12·15-s − 24·17-s + 44·19-s − 72·23-s − 109·25-s − 27·27-s − 38·29-s + 184·31-s − 60·33-s − 30·37-s − 12·39-s + 216·41-s + 164·43-s − 36·45-s + 520·47-s + 72·51-s − 146·53-s − 80·55-s − 132·57-s + 460·59-s − 628·61-s − 16·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.357·5-s + 1/3·9-s + 0.548·11-s + 0.0853·13-s + 0.206·15-s − 0.342·17-s + 0.531·19-s − 0.652·23-s − 0.871·25-s − 0.192·27-s − 0.243·29-s + 1.06·31-s − 0.316·33-s − 0.133·37-s − 0.0492·39-s + 0.822·41-s + 0.581·43-s − 0.119·45-s + 1.61·47-s + 0.197·51-s − 0.378·53-s − 0.196·55-s − 0.306·57-s + 1.01·59-s − 1.31·61-s − 0.0305·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2352\)    =    \(2^{4} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(138.772\)
Root analytic conductor: \(11.7801\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2352} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2352,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.413696710\)
\(L(\frac12)\) \(\approx\) \(1.413696710\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
7 \( 1 \)
good5 \( 1 + 4 T + p^{3} T^{2} \)
11 \( 1 - 20 T + p^{3} T^{2} \)
13 \( 1 - 4 T + p^{3} T^{2} \)
17 \( 1 + 24 T + p^{3} T^{2} \)
19 \( 1 - 44 T + p^{3} T^{2} \)
23 \( 1 + 72 T + p^{3} T^{2} \)
29 \( 1 + 38 T + p^{3} T^{2} \)
31 \( 1 - 184 T + p^{3} T^{2} \)
37 \( 1 + 30 T + p^{3} T^{2} \)
41 \( 1 - 216 T + p^{3} T^{2} \)
43 \( 1 - 164 T + p^{3} T^{2} \)
47 \( 1 - 520 T + p^{3} T^{2} \)
53 \( 1 + 146 T + p^{3} T^{2} \)
59 \( 1 - 460 T + p^{3} T^{2} \)
61 \( 1 + 628 T + p^{3} T^{2} \)
67 \( 1 + 556 T + p^{3} T^{2} \)
71 \( 1 + 592 T + p^{3} T^{2} \)
73 \( 1 + 1024 T + p^{3} T^{2} \)
79 \( 1 - 104 T + p^{3} T^{2} \)
83 \( 1 + 324 T + p^{3} T^{2} \)
89 \( 1 + 896 T + p^{3} T^{2} \)
97 \( 1 - 920 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.663365831577914013218299082889, −7.72032365913242408611027125691, −7.15663155743579120051101696372, −6.15705209015509191774917136480, −5.67921562330659162047980700822, −4.49796587366077070629749470008, −3.99654251927971147008455839266, −2.84019977407182425878939131067, −1.63349922225858288075667241568, −0.55922058666944304252626851776, 0.55922058666944304252626851776, 1.63349922225858288075667241568, 2.84019977407182425878939131067, 3.99654251927971147008455839266, 4.49796587366077070629749470008, 5.67921562330659162047980700822, 6.15705209015509191774917136480, 7.15663155743579120051101696372, 7.72032365913242408611027125691, 8.663365831577914013218299082889

Graph of the $Z$-function along the critical line