Properties

Label 2-2352-1.1-c3-0-115
Degree $2$
Conductor $2352$
Sign $-1$
Analytic cond. $138.772$
Root an. cond. $11.7801$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 4.54·5-s + 9·9-s + 40.7·11-s − 53.2·13-s + 13.6·15-s − 4.54·17-s + 122.·19-s − 131.·23-s − 104.·25-s + 27·27-s − 216.·29-s − 251.·31-s + 122.·33-s + 11.8·37-s − 159.·39-s + 111.·41-s − 369.·43-s + 40.9·45-s − 262.·47-s − 13.6·51-s − 567.·53-s + 185.·55-s + 367.·57-s + 839.·59-s + 485.·61-s − 242.·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.406·5-s + 0.333·9-s + 1.11·11-s − 1.13·13-s + 0.234·15-s − 0.0649·17-s + 1.48·19-s − 1.19·23-s − 0.834·25-s + 0.192·27-s − 1.38·29-s − 1.45·31-s + 0.644·33-s + 0.0528·37-s − 0.656·39-s + 0.425·41-s − 1.30·43-s + 0.135·45-s − 0.815·47-s − 0.0374·51-s − 1.46·53-s + 0.454·55-s + 0.854·57-s + 1.85·59-s + 1.01·61-s − 0.462·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2352\)    =    \(2^{4} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(138.772\)
Root analytic conductor: \(11.7801\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2352,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
7 \( 1 \)
good5 \( 1 - 4.54T + 125T^{2} \)
11 \( 1 - 40.7T + 1.33e3T^{2} \)
13 \( 1 + 53.2T + 2.19e3T^{2} \)
17 \( 1 + 4.54T + 4.91e3T^{2} \)
19 \( 1 - 122.T + 6.85e3T^{2} \)
23 \( 1 + 131.T + 1.21e4T^{2} \)
29 \( 1 + 216.T + 2.43e4T^{2} \)
31 \( 1 + 251.T + 2.97e4T^{2} \)
37 \( 1 - 11.8T + 5.06e4T^{2} \)
41 \( 1 - 111.T + 6.89e4T^{2} \)
43 \( 1 + 369.T + 7.95e4T^{2} \)
47 \( 1 + 262.T + 1.03e5T^{2} \)
53 \( 1 + 567.T + 1.48e5T^{2} \)
59 \( 1 - 839.T + 2.05e5T^{2} \)
61 \( 1 - 485.T + 2.26e5T^{2} \)
67 \( 1 - 333.T + 3.00e5T^{2} \)
71 \( 1 + 590.T + 3.57e5T^{2} \)
73 \( 1 + 490.T + 3.89e5T^{2} \)
79 \( 1 + 121.T + 4.93e5T^{2} \)
83 \( 1 - 609.T + 5.71e5T^{2} \)
89 \( 1 + 719.T + 7.04e5T^{2} \)
97 \( 1 - 637.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.205758253550049286240659183678, −7.47905335322993365232125044789, −6.87022043742042983277787364342, −5.84294965280489941047744059433, −5.13849556633611255921516790337, −4.02007516798388619162543308264, −3.37897544399514458125701179119, −2.18595070889658692551586986470, −1.50019691474786066294585784667, 0, 1.50019691474786066294585784667, 2.18595070889658692551586986470, 3.37897544399514458125701179119, 4.02007516798388619162543308264, 5.13849556633611255921516790337, 5.84294965280489941047744059433, 6.87022043742042983277787364342, 7.47905335322993365232125044789, 8.205758253550049286240659183678

Graph of the $Z$-function along the critical line