Properties

Label 2-2340-260.139-c0-0-3
Degree $2$
Conductor $2340$
Sign $0.265 - 0.964i$
Analytic cond. $1.16781$
Root an. cond. $1.08065$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (0.866 + 0.5i)5-s + 0.999i·8-s + (0.499 + 0.866i)10-s + (0.5 − 0.866i)13-s + (−0.5 + 0.866i)16-s + (−0.866 + 0.5i)17-s + 0.999i·20-s + (0.499 + 0.866i)25-s + (0.866 − 0.499i)26-s + (0.866 − 1.5i)29-s + (−0.866 + 0.499i)32-s − 0.999·34-s + (−1.5 − 0.866i)37-s + ⋯
L(s)  = 1  + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (0.866 + 0.5i)5-s + 0.999i·8-s + (0.499 + 0.866i)10-s + (0.5 − 0.866i)13-s + (−0.5 + 0.866i)16-s + (−0.866 + 0.5i)17-s + 0.999i·20-s + (0.499 + 0.866i)25-s + (0.866 − 0.499i)26-s + (0.866 − 1.5i)29-s + (−0.866 + 0.499i)32-s − 0.999·34-s + (−1.5 − 0.866i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2340\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $0.265 - 0.964i$
Analytic conductor: \(1.16781\)
Root analytic conductor: \(1.08065\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2340} (919, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2340,\ (\ :0),\ 0.265 - 0.964i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.267979117\)
\(L(\frac12)\) \(\approx\) \(2.267979117\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.866 - 0.5i)T \)
3 \( 1 \)
5 \( 1 + (-0.866 - 0.5i)T \)
13 \( 1 + (-0.5 + 0.866i)T \)
good7 \( 1 + (-0.5 + 0.866i)T^{2} \)
11 \( 1 + (0.5 + 0.866i)T^{2} \)
17 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
19 \( 1 + (0.5 - 0.866i)T^{2} \)
23 \( 1 + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \)
41 \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \)
43 \( 1 + (-0.5 + 0.866i)T^{2} \)
47 \( 1 + T^{2} \)
53 \( 1 - iT - T^{2} \)
59 \( 1 + (0.5 - 0.866i)T^{2} \)
61 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
67 \( 1 + (-0.5 - 0.866i)T^{2} \)
71 \( 1 + (0.5 - 0.866i)T^{2} \)
73 \( 1 + 1.73iT - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 + (-0.5 - 0.866i)T^{2} \)
97 \( 1 + (0.5 - 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.201163827515206894166232443632, −8.404550277924411204403240303534, −7.69428148076534493307505400220, −6.69973733496586861104103330710, −6.23870156208640225190354990770, −5.51766500101212710115047952640, −4.67494907977159935113909409576, −3.65124215407639663168584510523, −2.80606455265669437773342694077, −1.86791858821715913247879868251, 1.34680498588551904868958682969, 2.18505921524370723349739639310, 3.23199783147604813605232330389, 4.29152518228903457742746851345, 5.00138195665259953855514550183, 5.67296603200555271609335991926, 6.66815217538825850098319872565, 6.99515787015285323784162713406, 8.636601079391319694333997149084, 8.985052715960475639345519487982

Graph of the $Z$-function along the critical line