L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (0.866 + 0.5i)5-s + 0.999i·8-s + (0.499 + 0.866i)10-s + (0.5 − 0.866i)13-s + (−0.5 + 0.866i)16-s + (−0.866 + 0.5i)17-s + 0.999i·20-s + (0.499 + 0.866i)25-s + (0.866 − 0.499i)26-s + (0.866 − 1.5i)29-s + (−0.866 + 0.499i)32-s − 0.999·34-s + (−1.5 − 0.866i)37-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (0.866 + 0.5i)5-s + 0.999i·8-s + (0.499 + 0.866i)10-s + (0.5 − 0.866i)13-s + (−0.5 + 0.866i)16-s + (−0.866 + 0.5i)17-s + 0.999i·20-s + (0.499 + 0.866i)25-s + (0.866 − 0.499i)26-s + (0.866 − 1.5i)29-s + (−0.866 + 0.499i)32-s − 0.999·34-s + (−1.5 − 0.866i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.267979117\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.267979117\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
good | 7 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - iT - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + 1.73iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.201163827515206894166232443632, −8.404550277924411204403240303534, −7.69428148076534493307505400220, −6.69973733496586861104103330710, −6.23870156208640225190354990770, −5.51766500101212710115047952640, −4.67494907977159935113909409576, −3.65124215407639663168584510523, −2.80606455265669437773342694077, −1.86791858821715913247879868251,
1.34680498588551904868958682969, 2.18505921524370723349739639310, 3.23199783147604813605232330389, 4.29152518228903457742746851345, 5.00138195665259953855514550183, 5.67296603200555271609335991926, 6.66815217538825850098319872565, 6.99515787015285323784162713406, 8.636601079391319694333997149084, 8.985052715960475639345519487982