| L(s) = 1 | + (−0.5 − 0.866i)2-s + i·3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (0.866 − 0.5i)6-s + 0.999·8-s − 9-s − 0.999·10-s + (−0.866 − 1.5i)11-s + (−0.866 − 0.499i)12-s + (0.5 − 0.866i)13-s + (0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)18-s − 1.73·19-s + (0.499 + 0.866i)20-s + ⋯ |
| L(s) = 1 | + (−0.5 − 0.866i)2-s + i·3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (0.866 − 0.5i)6-s + 0.999·8-s − 9-s − 0.999·10-s + (−0.866 − 1.5i)11-s + (−0.866 − 0.499i)12-s + (0.5 − 0.866i)13-s + (0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)18-s − 1.73·19-s + (0.499 + 0.866i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5527914055\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5527914055\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
| good | 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + 1.73T + T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - 2T + T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.842610610433150694900148551271, −8.459713977028615335345466564029, −7.960302186097687527247802667316, −6.30498770294842757990370033806, −5.46453160611147554582557210993, −4.84262279942285748835018482864, −3.79414655026197004742988859580, −3.12405770352905842990677770370, −2.02201383292673133772534591636, −0.41334280522288297214452882955,
1.84579377847464154125592473242, 2.24047057777483383193364212242, 3.91906840802763885520558988194, 5.05742267672224586935328450351, 5.90818223769505959966578751933, 6.60947270498599432683463750419, 7.13021731047531893061413476189, 7.67586424056772957420935520859, 8.605808456612904398006933390789, 9.265960045343900339387176450164