Properties

Label 2-2340-2340.1039-c0-0-7
Degree $2$
Conductor $2340$
Sign $-0.766 + 0.642i$
Analytic cond. $1.16781$
Root an. cond. $1.08065$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + i·3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (0.866 − 0.5i)6-s + 0.999·8-s − 9-s − 0.999·10-s + (−0.866 − 1.5i)11-s + (−0.866 − 0.499i)12-s + (0.5 − 0.866i)13-s + (0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)18-s − 1.73·19-s + (0.499 + 0.866i)20-s + ⋯
L(s)  = 1  + (−0.5 − 0.866i)2-s + i·3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (0.866 − 0.5i)6-s + 0.999·8-s − 9-s − 0.999·10-s + (−0.866 − 1.5i)11-s + (−0.866 − 0.499i)12-s + (0.5 − 0.866i)13-s + (0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)18-s − 1.73·19-s + (0.499 + 0.866i)20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2340\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $-0.766 + 0.642i$
Analytic conductor: \(1.16781\)
Root analytic conductor: \(1.08065\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2340} (1039, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2340,\ (\ :0),\ -0.766 + 0.642i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5527914055\)
\(L(\frac12)\) \(\approx\) \(0.5527914055\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 + 0.866i)T \)
3 \( 1 - iT \)
5 \( 1 + (-0.5 + 0.866i)T \)
13 \( 1 + (-0.5 + 0.866i)T \)
good7 \( 1 + (0.5 - 0.866i)T^{2} \)
11 \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 + 1.73T + T^{2} \)
23 \( 1 + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
31 \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \)
37 \( 1 + T + T^{2} \)
41 \( 1 + (0.5 + 0.866i)T^{2} \)
43 \( 1 + (-0.5 + 0.866i)T^{2} \)
47 \( 1 + (0.5 - 0.866i)T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \)
61 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
67 \( 1 + (0.5 + 0.866i)T^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 - 2T + T^{2} \)
79 \( 1 + (0.5 - 0.866i)T^{2} \)
83 \( 1 + (0.5 - 0.866i)T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.842610610433150694900148551271, −8.459713977028615335345466564029, −7.960302186097687527247802667316, −6.30498770294842757990370033806, −5.46453160611147554582557210993, −4.84262279942285748835018482864, −3.79414655026197004742988859580, −3.12405770352905842990677770370, −2.02201383292673133772534591636, −0.41334280522288297214452882955, 1.84579377847464154125592473242, 2.24047057777483383193364212242, 3.91906840802763885520558988194, 5.05742267672224586935328450351, 5.90818223769505959966578751933, 6.60947270498599432683463750419, 7.13021731047531893061413476189, 7.67586424056772957420935520859, 8.605808456612904398006933390789, 9.265960045343900339387176450164

Graph of the $Z$-function along the critical line