L(s) = 1 | + (0.707 − 0.707i)2-s + (1.41 − 1.00i)3-s − 1.00i·4-s + (−0.593 − 2.21i)5-s + (0.290 − 1.70i)6-s + (1.07 + 4.02i)7-s + (−0.707 − 0.707i)8-s + (0.991 − 2.83i)9-s + (−1.98 − 1.14i)10-s + (1.17 + 1.17i)11-s + (−1.00 − 1.41i)12-s + (−3.59 + 0.246i)13-s + (3.60 + 2.08i)14-s + (−3.05 − 2.53i)15-s − 1.00·16-s + (−1.96 − 3.41i)17-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (0.815 − 0.578i)3-s − 0.500i·4-s + (−0.265 − 0.990i)5-s + (0.118 − 0.697i)6-s + (0.407 + 1.52i)7-s + (−0.250 − 0.250i)8-s + (0.330 − 0.943i)9-s + (−0.628 − 0.362i)10-s + (0.355 + 0.355i)11-s + (−0.289 − 0.407i)12-s + (−0.997 + 0.0683i)13-s + (0.964 + 0.556i)14-s + (−0.789 − 0.654i)15-s − 0.250·16-s + (−0.477 − 0.827i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.192 + 0.981i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.192 + 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.48743 - 1.22409i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.48743 - 1.22409i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (-1.41 + 1.00i)T \) |
| 13 | \( 1 + (3.59 - 0.246i)T \) |
good | 5 | \( 1 + (0.593 + 2.21i)T + (-4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-1.07 - 4.02i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (-1.17 - 1.17i)T + 11iT^{2} \) |
| 17 | \( 1 + (1.96 + 3.41i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.878 - 3.27i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-2.53 - 4.39i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 5.23iT - 29T^{2} \) |
| 31 | \( 1 + (-2.27 + 0.610i)T + (26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (-1.21 - 4.55i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-3.94 - 1.05i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (4.26 + 2.46i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.17 + 4.39i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + 6.69iT - 53T^{2} \) |
| 59 | \( 1 + (6.12 + 6.12i)T + 59iT^{2} \) |
| 61 | \( 1 + (5.81 - 10.0i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.59 - 13.4i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-13.5 - 3.63i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-6.61 + 6.61i)T - 73iT^{2} \) |
| 79 | \( 1 + (8.13 + 14.0i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (7.55 + 2.02i)T + (71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (8.95 - 2.40i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-8.27 + 2.21i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.18323991696453275850510130867, −11.56083110448147497375122345972, −9.729970995208698876213799003670, −9.027200580198768691577888475544, −8.260023649423713177638712369559, −6.96899727746681462074552227569, −5.48943758707768533449985622763, −4.53475960988697374356805472083, −2.89401515074157555380167082056, −1.70315998772541220674291992599,
2.72170190372381000859082397901, 3.95196693487184408392351247532, 4.68440177160583202012543887229, 6.57077034630417523960793008406, 7.38600691011094675346125955196, 8.169966456570918081575598800058, 9.483655394906781142931688644604, 10.69935048432052968543005219944, 11.03136736850717133934967308790, 12.67267811402474282257818962057