L(s) = 1 | + (−0.965 + 0.258i)2-s + (1.60 − 0.647i)3-s + (0.866 − 0.499i)4-s + (2.84 − 0.763i)5-s + (−1.38 + 1.04i)6-s + (−1.37 − 1.37i)7-s + (−0.707 + 0.707i)8-s + (2.16 − 2.07i)9-s + (−2.55 + 1.47i)10-s + (0.207 + 0.774i)11-s + (1.06 − 1.36i)12-s + (−3.58 − 0.369i)13-s + (1.68 + 0.975i)14-s + (4.08 − 3.06i)15-s + (0.500 − 0.866i)16-s + (−4.02 + 6.96i)17-s + ⋯ |
L(s) = 1 | + (−0.683 + 0.183i)2-s + (0.927 − 0.373i)3-s + (0.433 − 0.249i)4-s + (1.27 − 0.341i)5-s + (−0.565 + 0.424i)6-s + (−0.521 − 0.521i)7-s + (−0.249 + 0.249i)8-s + (0.720 − 0.693i)9-s + (−0.807 + 0.466i)10-s + (0.0625 + 0.233i)11-s + (0.308 − 0.393i)12-s + (−0.994 − 0.102i)13-s + (0.451 + 0.260i)14-s + (1.05 − 0.792i)15-s + (0.125 − 0.216i)16-s + (−0.975 + 1.68i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.878 + 0.476i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.878 + 0.476i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.31821 - 0.334631i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.31821 - 0.334631i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 - 0.258i)T \) |
| 3 | \( 1 + (-1.60 + 0.647i)T \) |
| 13 | \( 1 + (3.58 + 0.369i)T \) |
good | 5 | \( 1 + (-2.84 + 0.763i)T + (4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (1.37 + 1.37i)T + 7iT^{2} \) |
| 11 | \( 1 + (-0.207 - 0.774i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (4.02 - 6.96i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.18 + 4.41i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 - 6.99T + 23T^{2} \) |
| 29 | \( 1 + (-6.82 - 3.93i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.619 - 2.31i)T + (-26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (2.09 - 7.82i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (3.66 + 3.66i)T + 41iT^{2} \) |
| 43 | \( 1 - 2.33iT - 43T^{2} \) |
| 47 | \( 1 + (5.14 + 1.37i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 - 8.27iT - 53T^{2} \) |
| 59 | \( 1 + (8.52 + 2.28i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + 4.93T + 61T^{2} \) |
| 67 | \( 1 + (-0.549 + 0.549i)T - 67iT^{2} \) |
| 71 | \( 1 + (2.57 - 0.689i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (-5.68 - 5.68i)T + 73iT^{2} \) |
| 79 | \( 1 + (-0.554 - 0.960i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.614 + 2.29i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (2.84 + 0.761i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-2.59 + 2.59i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.42943212484892516788898008334, −10.67191780647538184973093738397, −9.951418219643264636821172269098, −9.117095840521486538157897653617, −8.426672943273344445927162380366, −6.99516096156211890117155259340, −6.46911669981743307906616803411, −4.77930826791968926589559932029, −2.86963670248523741993018189944, −1.58144345385466811831595302942,
2.20951009244079053766876995144, 2.96753116998392828038895073325, 4.90646862467217129018284809716, 6.36661002261329958814286064036, 7.36926338038589454773030106427, 8.708153648266285168840934254018, 9.496283946850151939372933625213, 9.893572324423413702362766650158, 10.96076097048235364003894943500, 12.26949238350492626481044711186