L(s) = 1 | + (−0.965 + 0.258i)2-s + (1.60 − 0.647i)3-s + (0.866 − 0.499i)4-s + (2.84 − 0.763i)5-s + (−1.38 + 1.04i)6-s + (−1.37 − 1.37i)7-s + (−0.707 + 0.707i)8-s + (2.16 − 2.07i)9-s + (−2.55 + 1.47i)10-s + (0.207 + 0.774i)11-s + (1.06 − 1.36i)12-s + (−3.58 − 0.369i)13-s + (1.68 + 0.975i)14-s + (4.08 − 3.06i)15-s + (0.500 − 0.866i)16-s + (−4.02 + 6.96i)17-s + ⋯ |
L(s) = 1 | + (−0.683 + 0.183i)2-s + (0.927 − 0.373i)3-s + (0.433 − 0.249i)4-s + (1.27 − 0.341i)5-s + (−0.565 + 0.424i)6-s + (−0.521 − 0.521i)7-s + (−0.249 + 0.249i)8-s + (0.720 − 0.693i)9-s + (−0.807 + 0.466i)10-s + (0.0625 + 0.233i)11-s + (0.308 − 0.393i)12-s + (−0.994 − 0.102i)13-s + (0.451 + 0.260i)14-s + (1.05 − 0.792i)15-s + (0.125 − 0.216i)16-s + (−0.975 + 1.68i)17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(0.878+0.476i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(0.878+0.476i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
0.878+0.476i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(41,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), 0.878+0.476i)
|
Particular Values
L(1) |
≈ |
1.31821−0.334631i |
L(21) |
≈ |
1.31821−0.334631i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.965−0.258i)T |
| 3 | 1+(−1.60+0.647i)T |
| 13 | 1+(3.58+0.369i)T |
good | 5 | 1+(−2.84+0.763i)T+(4.33−2.5i)T2 |
| 7 | 1+(1.37+1.37i)T+7iT2 |
| 11 | 1+(−0.207−0.774i)T+(−9.52+5.5i)T2 |
| 17 | 1+(4.02−6.96i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.18+4.41i)T+(−16.4+9.5i)T2 |
| 23 | 1−6.99T+23T2 |
| 29 | 1+(−6.82−3.93i)T+(14.5+25.1i)T2 |
| 31 | 1+(−0.619−2.31i)T+(−26.8+15.5i)T2 |
| 37 | 1+(2.09−7.82i)T+(−32.0−18.5i)T2 |
| 41 | 1+(3.66+3.66i)T+41iT2 |
| 43 | 1−2.33iT−43T2 |
| 47 | 1+(5.14+1.37i)T+(40.7+23.5i)T2 |
| 53 | 1−8.27iT−53T2 |
| 59 | 1+(8.52+2.28i)T+(51.0+29.5i)T2 |
| 61 | 1+4.93T+61T2 |
| 67 | 1+(−0.549+0.549i)T−67iT2 |
| 71 | 1+(2.57−0.689i)T+(61.4−35.5i)T2 |
| 73 | 1+(−5.68−5.68i)T+73iT2 |
| 79 | 1+(−0.554−0.960i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−0.614+2.29i)T+(−71.8−41.5i)T2 |
| 89 | 1+(2.84+0.761i)T+(77.0+44.5i)T2 |
| 97 | 1+(−2.59+2.59i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.42943212484892516788898008334, −10.67191780647538184973093738397, −9.951418219643264636821172269098, −9.117095840521486538157897653617, −8.426672943273344445927162380366, −6.99516096156211890117155259340, −6.46911669981743307906616803411, −4.77930826791968926589559932029, −2.86963670248523741993018189944, −1.58144345385466811831595302942,
2.20951009244079053766876995144, 2.96753116998392828038895073325, 4.90646862467217129018284809716, 6.36661002261329958814286064036, 7.36926338038589454773030106427, 8.708153648266285168840934254018, 9.496283946850151939372933625213, 9.893572324423413702362766650158, 10.96076097048235364003894943500, 12.26949238350492626481044711186