L(s) = 1 | + (−0.965 − 0.258i)2-s + (1.60 + 0.647i)3-s + (0.866 + 0.499i)4-s + (2.84 + 0.763i)5-s + (−1.38 − 1.04i)6-s + (−1.37 + 1.37i)7-s + (−0.707 − 0.707i)8-s + (2.16 + 2.07i)9-s + (−2.55 − 1.47i)10-s + (0.207 − 0.774i)11-s + (1.06 + 1.36i)12-s + (−3.58 + 0.369i)13-s + (1.68 − 0.975i)14-s + (4.08 + 3.06i)15-s + (0.500 + 0.866i)16-s + (−4.02 − 6.96i)17-s + ⋯ |
L(s) = 1 | + (−0.683 − 0.183i)2-s + (0.927 + 0.373i)3-s + (0.433 + 0.249i)4-s + (1.27 + 0.341i)5-s + (−0.565 − 0.424i)6-s + (−0.521 + 0.521i)7-s + (−0.249 − 0.249i)8-s + (0.720 + 0.693i)9-s + (−0.807 − 0.466i)10-s + (0.0625 − 0.233i)11-s + (0.308 + 0.393i)12-s + (−0.994 + 0.102i)13-s + (0.451 − 0.260i)14-s + (1.05 + 0.792i)15-s + (0.125 + 0.216i)16-s + (−0.975 − 1.68i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.878 - 0.476i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.878 - 0.476i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.31821 + 0.334631i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.31821 + 0.334631i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 + 0.258i)T \) |
| 3 | \( 1 + (-1.60 - 0.647i)T \) |
| 13 | \( 1 + (3.58 - 0.369i)T \) |
good | 5 | \( 1 + (-2.84 - 0.763i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (1.37 - 1.37i)T - 7iT^{2} \) |
| 11 | \( 1 + (-0.207 + 0.774i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (4.02 + 6.96i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.18 - 4.41i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 - 6.99T + 23T^{2} \) |
| 29 | \( 1 + (-6.82 + 3.93i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.619 + 2.31i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (2.09 + 7.82i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (3.66 - 3.66i)T - 41iT^{2} \) |
| 43 | \( 1 + 2.33iT - 43T^{2} \) |
| 47 | \( 1 + (5.14 - 1.37i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + 8.27iT - 53T^{2} \) |
| 59 | \( 1 + (8.52 - 2.28i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + 4.93T + 61T^{2} \) |
| 67 | \( 1 + (-0.549 - 0.549i)T + 67iT^{2} \) |
| 71 | \( 1 + (2.57 + 0.689i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-5.68 + 5.68i)T - 73iT^{2} \) |
| 79 | \( 1 + (-0.554 + 0.960i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.614 - 2.29i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (2.84 - 0.761i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-2.59 - 2.59i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.26949238350492626481044711186, −10.96076097048235364003894943500, −9.893572324423413702362766650158, −9.496283946850151939372933625213, −8.708153648266285168840934254018, −7.36926338038589454773030106427, −6.36661002261329958814286064036, −4.90646862467217129018284809716, −2.96753116998392828038895073325, −2.20951009244079053766876995144,
1.58144345385466811831595302942, 2.86963670248523741993018189944, 4.77930826791968926589559932029, 6.46911669981743307906616803411, 6.99516096156211890117155259340, 8.426672943273344445927162380366, 9.117095840521486538157897653617, 9.951418219643264636821172269098, 10.67191780647538184973093738397, 12.42943212484892516788898008334